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Abstract
The linear contextual bandits is a sequential
decision-making problem where an agent decides
among sequential actions given their correspond-
ing contexts. Since large-scale data sets become
more and more common, we study the linear con-
textual bandits in high-dimensional situations. Re-
cent works focus on employing matrix sketching
methods to accelerating contextual bandits. How-
ever, the matrix approximation error will bring ad-
ditional terms to the regret bound. In this paper
we first propose a novel matrix sketching method
which is called Spectral Compensation Frequent
Directions (SCFD). Then we propose an efficient
approach for contextual bandits by adopting SCFD
to approximate the covariance matrices. By main-
taining and manipulating sketched matrices, our
method only needs O(md) space and O(md) up-
date time in each round, where d is the dimension-
ality of the data and m is the sketching size. The-
oretical analysis reveals that our method has bet-
ter regret bounds than previous methods in high-
dimensional cases. Experimental results demon-
strate the effectiveness of our algorithm and verify
our theoretical guarantees.

1 Introduction
The contextual bandit is a popular model for sequential
decision-making problems [Auer, 2002; Dani et al., 2008;
Chu et al., 2011; Abbasi-Yadkori et al., 2011]. In contex-
tual bandit problems, a decision maker repeatedly (a) receives
a set of contexts (or actions), (b) chooses an action, and (c)
observes a reward for the chosen action. The goal is to max-
imize the expected cumulative reward over some time hori-
zon. Recently, contextual bandits have been applied to many
machine learning tasks, including personalized recommenda-
tion [Li et al., 2010], web advertising [Tang et al., 2013],
social network analysis [Zhao et al., 2014] and mobile health
platforms [Tewari and Murphy, 2017].

Contextual bandits have been widely studied in recent
years [Langford and Zhang, 2008; Tang et al., 2013]. The
traditional methods for linear contextual bandits includ-
ing upper-confidence bound algorithms [Chu et al., 2011;

Abbasi-Yadkori et al., 2011] and Thompson sampling al-
gorithms [Agrawal and Goyal, 2013; Russo and Van Roy,
2014]. Some other works extends linear bandits to gener-
alized linear models [Filippi et al., 2010; Li et al., 2017;
Dumitrascu et al., 2018]. A famous algorithm for lin-
ear contextual bandits is LinUCB [Chu et al., 2011], which

regret bound is O(
√

dT log3(KT log(T )/δ)). Here d is
the dimension of the contextual vectors and T is the time
horizon. This result was improved to O(d

√
T log(T ) +√

dT log(T ) log(1/δ)) [Abbasi-Yadkori et al., 2011], which
is irrelevant to the number of arms K.

In the big data era, the dimension of the data grows rapidly.
In high-dimensional situation, i.e., d ≈ T , most traditional
bandit algorithms are time-consuming. Also, the upper re-
gret bounds become larger with the growth of the dimension.
Some recent works focus on high dimensional linear contex-
tual bandits. SLUCB [Carpentier and Munos, 2012] achieves a
regret bound O(S

√
T ) by assuming that the contextual data

contains only S non-zero components. BallEXP [Deshpande
and Montanari, 2012] leverages the technique of ball explo-
ration in the high-dimensional space, but their regret bound is
very loose. These two methods are still less efficient in prac-
tice because they require O(d2) time in each round. Calan-
driello et al. [2019] proposed an efficient Gaussian process
based algorithm for kernel bandits. But their regret bound is
Õ(d
√
T ) for linear kernels.

Recently, some researchers apply matrix sketching tech-
niques to contextual bandit problems [Yu et al., 2017;
Kuzborskij et al., 2019]. In [Yu et al., 2017], random pro-
jection was adopted to map the high-dimensional contextual
information to a random m-dimensional subspace and pro-
posed Contextual Bandits with RAndom Projection (CBRAP)
algorithm. Though CBRAP successfully reduces the update
time from O(d2) to O(md+m3), the random projection in-
troduces an additive error εT to their regret bound. To enable
the failure probability δ away from 1, the parameter ε has to
be Ω(m−1/2). Kuzborskij et al. [2019] propose SOFUL algo-
rithm by adopting Frequent Directions (FD) to sketch covari-
ance matrices of linear contextual bandits. Since FD [Liberty,
2013; Ghashami et al., 2016] has good theoretical guarantees
in streaming setting, it is more suitable for contextual ban-
dits than random projection. Due to the advantage of FD,
SOFUL only require O(md) update time and achieve upper re-



gret bound as Õ((1+∆T )
3/2(m+d log(1+∆T ))

√
T ), where

∆T is upper bounded by the spectral tail of the covariance
matrix.

However, FD still has some drawbacks when applied to
contextual bandits. First, the sequence of covariance matri-
ces satisfies the positive definite monotonicity, i.e. Vt ⪰
Vt−1, where Vt is the covariance matrix in the t-th round.
But FD produces a rank-deficient approximation which de-
stroys the positive definite monotonicity of covariance matri-
ces. This deficiency leads to additional terms in the regret
bounds of contextual bandits. Specifically, the regret bound
of [Kuzborskij et al., 2019] is associated with the spectral tail
to the power of 3/2. However, the sketch size is usually much
smaller than the rank of covariance matrix in practice. Thus
their bounds may be heavily affected by the spectral tail.

In this paper, we present a variant of Frequent Directions,
which we call Spectral Compensation Frequent Directions
(SCFD). To overcome the disadvantages of FD, SCFD compen-
sates a diagonal matrix which contains spectral information to
the result of FD. We further adopt SCFD to accelerate LinUCB,
and propose an efficient algorithm for high-dimensional lin-
ear contextual bandits, which is called Contextual Bandits
via Spectral Compensation Frequent Directions (CBSCFD).
Unlike the regularization term used in [Kuzborskij et al.,
2019], which is invariant during the sequential decisions, the
compensated diagonal matrix of SCFD changes adaptively in
each round. Compare with previous methods for contextual
bandits, our method provide better regret bounds in high-
dimensional cases. In addition, our algorithm is much less
sensitive to the regularization hyper-parameter, which means
that our method is robust.

The main contributions of this paper are summarized as
follows:

• We propose SCFD algorithm for matrix sketching. SCFD
can approximate a sequence of incremental covariance
matrices while keeping the positive definite monotonic-
ity.

• We propose CBSCFD for high-dimensional linear con-
textual bandits. Our methods only requires O(md)
time and O(md) space to update the model in each
round. Also, our methods obtain a regret bound
of Õ((

√
m+ d log(1 + ∆T )+

√
∆T )
√
mT ), which is

better than state-of-the-art methods. Here ∆T is upper
bounded by the spectral tail (sum of the last d −m + 1
singular values) of the covariance matrix.

• We validate our approach on both synthetic and real-
world data sets. The result of experiments shows that our
algorithm outperforms other state-of-the-art algorithms
in the high-dimensional setting.

2 Preliminaries

In this section, we first show notations used in this paper.
Then we describe the problem setting of linear contextual
bandits. Finally we introduce recent works for Frequent Di-
rections.

2.1 Notation and Definition
Let X denote the context space and A = {1, . . . ,K} denote
the action space. Suppose the total rounds of playing ban-
dits is T . We use Õ notation to hide log(T ) in the complexity
analysis. We use Im to denote m×m identity matrix, and 0 to
denote a zero vector or matrix of appropriate size. For a vec-
tor x ∈ Rd, let ∥x∥2 be the ℓ2-norm of x. For a positive semi-
definite (PSD) matrix A, the weighted 2-norm of vector x is
defined by ∥x∥A =

√
x⊤Ax. We denote the inner product

as ⟨·, ·⟩ and the weighted inner product as xA⊤y = ⟨x,y⟩A.
Let det(A) be the determinant of A. For two PSD matrices
A and B, we use A ⪰ B to represent the fact that A−B is
PSD.

Let ρ be the rank of matrix A. The reduced SVD of A

is defined as A = UΣV⊤ =
ρ∑

i=1

σiuiv
⊤
i , where σi are

positive singular values in the descending order. That is,
σi(A) is the i-th largest singular value of A. Let κ(A) =
σmax(A)/σmin(A) be the condition number of A. Let
(A)k =

∑k
i=1 σiuiv

⊤
i denote the best rank-k approxima-

tion of A. Additionally, we let ∥A∥F =
√∑

i,j A
2
ij be the

Frobenius norm and ∥A∥2 = σmax(A) be the spectral norm.
We define the positive definite monotonicity as follows:

Definition 1. For a sequence of positive semi-definite matri-
ces {Ai}Ti=1, we say {Ai}Ti=1 satisfies positive definite mono-
tonicity if and only if

Ai ⪰ Ai−1 for i ∈ {2, 3, . . . , T}.

2.2 Problem Setting
We introduce the problem of linear contextual bandits [Chu et
al., 2011; Abbasi-Yadkori et al., 2011]. At each round t, the
learner receives contexts xt,a for all a ∈ A. Then, the learner
chooses an action at and observes a reward yt ∈ [0, 1]. The
reward has the structure yt = x⊤

t,at
θ∗ + ηt where θ∗ ∈ Rd is

an unknown true parameter and ηt is a conditionally R-sub-
Gaussian noise. That is

E
[
eληt |x1,a1 , . . . ,xt,at ; η1, . . . , ηt−1

]
≤ exp

(
λ2R2

2

)
.

This condition implies that

E [ηt|x1,a1 , . . . ,xt,at ; η1, . . . , ηt−1] = 0.

The cumulative regret in this setting is defined by

RT =

T∑
t=1

x⊤
t,a∗θ∗ −

T∑
t=1

x⊤
t,at

θ∗, (1)

where a∗=argmaxa∈A x⊤
t,aθ∗ is the optimal action at round

t. The goal of the learner is to minimize the regret RT .

2.3 Frequent Directions
Frequent Directions [Liberty, 2013; Ghashami et al., 2016] is
a deterministic matrix sketching method for streaming model.
It has been applied to speed up many online learning al-
gorithms including linear bandits [Kuzborskij et al., 2019;
Luo et al., 2016; Luo et al., 2019]. For any given matrix



XT ∈ RT×d which rows come sequentially, FD aims to gen-
erate a matrix ZT ∈ Rm×d such that

X⊤
TXT ≈ Z⊤

TZT .

Here m ≪ min{d, T} is the sketching size. Suppose the
given matrix XT = [x1,x2, . . . ,xT ]

⊤. At round t, FD in-
serts x⊤

t into the last row of Zt−1 and performs following
manipulations:

[U,Σ,V] = SVD(Zt−1),

δt = Σ2
mm,

Zt =
√
Σ2 − δImV⊤.

By using the doubling space technique, FD only need O(md)
time to update the model per round (see Section 3.2 of
[Ghashami et al., 2016]). Moreover, the approximation ma-
trix is bounded by:

∥X⊤
TXT − Z⊤

TZT ∥2 ≤
∥XT − (XT )k∥2F

m− k
,

where 0 < k < m.
Some variants of FD have been proposed in recent years.

Parameterized Frequent Directions [Desai et al., 2016] speci-
fies the proportion of singular values shrunk in each round;
Compensative Frequent Directions [Desai et al., 2016] in-
creases the singular values of the sketching matrix. Both
methods may increase the performance empirically, but keep
the same error bound as traditional FD algorithm. Robust
Frequent Directions[Luo et al., 2019] introduces an adaptive
regularizer and improves the approximation error bound by a
factor 1/2. Though these variants of FD have different levels
of improvement on the FD, they all destroy the positive def-
inite monotonicity of covariance matrices and may increase
the regret bound when applied to linear contextual bandits.

3 Main Results
In this section, we first present our SCFD algorithm. Then, we
propose CBSCFD algorithm for linear bandits based on SCFD,
and analyze the complexity of our approach. Finally we pro-
vide theoretical analysis on the regret bounds of our algo-
rithm.

3.1 Spectral Compensation Frequent Direction
Reviewing the procedure of Frequent Directions, we notice
that FD subtracts a small term δt from singular values in each
round. This manipulation will bring approximation errors and
break the positive definite monotonicity. Thus, our idea is to
compensate the lost spectral information to the approxima-
tion. Specifically, we keep a counter αt to add up the to-
tal mass of subtracted values during the Frequent Directions
procedure. Then, we compensate the reduced spectrum to the
sketched matrix by adding a diagonal matrix αtId. Namely,
we use a full rank matrix to approximate the original matrix
as follows:

X⊤
t Xt ≈ Z⊤

t Zt + αtId,

where Xt = [x1,x2, . . . ,xt]
⊤. We present the procedure

of SCFD in Algorithm 1. In Algorithm 1, we show how the

Algorithm 1 SCFD
Input: XT = [x1, . . . ,xT ]

⊤, m, α0 ≥ 0.
1: Z0 = 0m×d

2: for t = 1, 2, . . . , T do
3: Zt ← [Z⊤

t−1,xt]
⊤, αt ← αt−1

4: if Zt has 2m rows then
5: Compute SVD: [U,Σ,V]← SVD(Zt).
6: δt ← σ2

m(Zt), αt ← αt−1 + δt.
7: Σ̂←

√
max{Σ2 − δtI, 0}.

8: Zt ← Σ̂V⊤.
9: Remove zero value rows in Zt.

10: end if
11: end for
Output: ZT , αT .

doubling space technique [Ghashami et al., 2016] is applied
to SCFD. Notice that after performing line 5-9, Zt will have
only m−1 rows. Thus, the “if” statement is triggered every
m+1 iterations, which indicates that the average time cost of
SCFD is O(md). Let ∆t =

∑t
i=1 δt, then αt = α0 +∆t. We

have the following theorem:
Theorem 1. Assume that SCFD runs with α0=0. Let Z⊤

t Zt+
αtId be the sketch of X⊤

t Xt at round t. Then we have

∥Z⊤
t Zt + αtId −X⊤

t Xt∥2 ≤
∥Xt − (Xt)k∥2F

m− k

for all 0 < k < m.

Proof. Since αtId is only added on the output matrix, the
sketched matrix Zt still satisfies the property of original FD.
The Property 1 and Property 2 of Ghashami et al. [2016]
shows that Z⊤

t Zt+∆tId ⪰ X⊤
t Xt ⪰ Z⊤

t Zt. Combining the
fact that αt = α0 +∆t = ∆t, we have

∥Z⊤
t Zt + αtId −X⊤

t Xt∥2 ≤ ∆t.

Using the fact that ∆t ≤ ∥Xt − (Xt)k∥2F /(m − k) for all
0 < k < m [Ghashami et al., 2016, Theorem 3.1], we get the
conclusion of Theorem 1.

Theorem 1 shows that the error of SCFD is bounded by the
spectral tail of the data matrix. Actually, SCFD has the same
error bound as the original Frequent Directions. However,
SCFD has the property that the sequence of approximation ma-
trices {Z⊤

t Zt+αtId}Tt=0 satisfies the positive definite mono-
tonicity, which is very important in the regret analysis. We
formally present the property as follows:
Property 1. Suppose α0 ≥ 0. When SCFD is running, at each
round t, we have

Z⊤
t Zt + αtId ⪰ Z⊤

t−1Zt−1 + αt−1Id.

Proof. Let Z′ = [Z⊤
t−1,xt]

⊤, then we have

Z⊤
t Zt + δtId ⪰ Z′⊤Z′ ⪰ Z⊤

t−1Zt−1. (2)
Then, for any unit vector w, we can get

w⊤(Z⊤
t Zt + αtId − Z⊤

t−1Zt−1 − αt−1Id)w

=w⊤(Z⊤
t Zt + δtId − Z⊤

t−1Zt−1)w ≥ 0
(3)

The last step holds because of Eq.(2).



Another property is that the approximation matrices of
SCFD is more well-conditioned than FD and even the origi-
nal matrix, which indicates that SCFD will make the whole al-
gorithm more stable. Let VSCFD = Z⊤

t Zt + αtId, VFD =
Z⊤

t Zt+α0Id and V = X⊤
t Xt+α0Id. We have the following

property:

Property 2. Suppose α0 ≥ 0. When SCFD is running, at each
round t, we have

κ(VSCFD) ≤ κ(VFD) and κ(VSCFD) ≤ κ(V).

Proof. Since αt ≥ α0, we have

κ(VSCFD) = (σmax(Z
⊤
t Zt) + αt)/αt

≤ (σmax(Z
⊤
t Zt) + α0)/α0 = κ(VFD).

κ(VSCFD) = (σmax(Z
⊤
t Zt) + αt)/αt

≤ (σmax(X
⊤
t Xt) + αt)/αt

≤ (σmax(X
⊤
t Xt) + α0)/α0 = κ(V).

Remark 1. Theorem 1 and Property 2 shows that our method
makes the approximation matrices both theoretically guaran-
teed and well-conditioned. To this sense, the αt selected by
Algorithm 1 is optimal. Setting αt to a larger value would
lead to breaking Theorem 1. Choose a smaller value for αt

would lead to worse condition number of the approximation
matrices.

3.2 Contextual Bandits via Spectral Compensation
Frequent Direction

Our method is a sketched version of LinUCB, which finds
the solution in a confidence ellipsoid [Abbasi-Yadkori et al.,
2011]. Suppose Xt = [x1,a1 ,x2,a2 , . . . ,xt,at ]

⊤ be the se-
quence of selected arms of a contextual bandit. The regular-
ized covariance matrix is defined as

Vt=X⊤
t Xt+λI.

In each round, LinUCB require O(d2) to update the in-
verse of regularized covariance matrix, which is rather costly
when d is large. Thus, we adopt SCFD to approximate Vt

in LinUCB by setting α0 = λ. We present CBSCFD in Algo-
rithm 2. Then, we show how CBSCFD efficiently computes
the inverse of approximated covariance matrix V̂−1

t . Let
Ht = (ZtZ

⊤
t + αtI)

−1. By Woodbury Formula, we have
V̂−1

t = (Z⊤
t Zt + αtI)

−1 = (I − Z⊤
t HtZt)/αt. When the

“if” statement is triggered, We have Zt = Σ̂V⊤, thus Ht

can easily computed as Ht = (Σ̂2 + αtI)
−1. When the “if”

statement is not triggered, we can compute Ht as follows:

Ht =

([
Zt−1

xt

]
[Zt−1 xt]

⊤
+ αtI

)−1

=

[
Ht−1 + pp⊤/k −p/k
−p⊤/k 1/k

] (4)

where p = Ht−1Zt−1xt and k = x⊤
t xt − x⊤

t Z
⊤
t−1p+ αt.

Algorithm 2 CBSCFD
Input: Sketch size m, parameter λ > 0, β > 0.

1: θ̂0 = 0, α0 = λ, V̂0 = α0Id, Z0 = 0m×d.
2: for t = 1, 2, . . . , T do
3: Observe contexts xt,a.

4: Select at = argmaxa∈A

{
θ̂⊤t−1xt,a + β∥xt,a∥V̂−1

t−1

}
.

5: Receive reward yt.
6: Zt ← [Z⊤

t−1,xt,at
]⊤, αt ← αt−1.

7: if Zt has 2m rows then
8: Compute SVD: [U,Σ,V]← SVD(Zt).
9: δt ← σ2

m(Zt), αt ← αt−1 + δt.
10: Σ̂←

√
max{Σ2 − δtI, 0}, Zt ← Σ̂V⊤.

11: Ht ← (Σ̂2 + αtI)
−1.

12: else
13: Compute Ht as (4).
14: end if
15: V̂−1

t ← 1
αt
(I− Z⊤

t HtZt)

16: θ̂t ← V̂−1
t

t∑
i=1

xi,ai
yi.

17: end for

Since the size of Ht is at most 2m, CBSCFD require at most
O(md) time to compute Ht. In addition, our method do not
need to compute the elements of V̂−1

t because all operations
involving V̂−1

t are matrix-vector multiplications. Therefore,
we only need to consider the matrix-vector multiplications
involving Zt, which require only O(md) time. As discussed
in Section 3.1, SCFD only needs to compute SVD every m+1
round. Thus, the average time cost per round of CBSCFD is
O(md). Since we only need to store Zt and Ht, the space
complexity of CBSCFD algorithm is O(md).

3.3 Regret Analysis
Define Yt = [y1, y2, . . . , yt]

⊤, then we have θ̂t =

V̂−1
t XtYt. The upper regret bound of Algorithm 2 is sum-

marized in the following theorem.

Theorem 2. Assume that ∥θ∗∥2 ≤ S, ∥xt,a∥2 ≤ L and ηt is
a R-sub-Gaussian noise for t ∈ {1, 2, . . . , T}. If Algorithm
2 runs with β = βT (δ), then with probability 1− δ, the regret
of Algorithm 2 is

Regret(T ) ≤ βT (δ)

√
8mT log

(
1 +

TL2

mλ

)
where

βT (δ) =R

√
2 log

1

δ
+m log

(
1 +

TL2

mλ

)
+d log

(
1 +

∆T

λ

)
+ S

√
λ+∆T .

Proof sketch. The first step is to find the confidence ellip-
soid where θ∗ lies. Actually, we can obtain that θ∗ lies in the
set

Ct = {θ : ∥θ̂t − θ∥V̂t
≤ βt(δ)} (5)



Algorithm Time cost per round Space Upper regret bound
LinUCB O(d2) O(d2) Õ(d

√
T )

CBRAP O(md+m3) O(md) Õ(
√
mT +m−1/2T )

SOFUL O(md) O(md) Õ((1 + ∆T )
3/2(m+ d log(1 + ∆T ))

√
T )

Our method O(md) O(md) Õ((
√

m+ d log(1 + ∆T ) +
√
∆T )
√
mT )

Table 1: Comparison of our theoretical results with state-of-the-art approaches. Here we consider the parameter λ as a constant.

with probability 1 − δ. Notice that the line 4 of Algorithm 2
is equivalent to solving the following problem:

(xt,at , θ̃t) = argmaxx⊤θ s.t. (x, θ) ∈ Dt × Ct−1,

where Dt is the decision set that xt,a belongs to. Thus, the
action at chosen by Algorithm 2 satisfies x⊤

t,at
θ̃t ≥ x∗

t
⊤θ∗.

We next consider the regret rt at round t:

rt =x∗⊤
t,at

θ∗ − x⊤
t,at

θ∗

≤x⊤
t,at

θ̃t − x⊤
t,at

θ∗

=x⊤
t,at

(θ̂t−1 − θ∗) + x⊤
t,at

(θ̃t − θ̂t−1)

≤∥xt,at
∥V̂−1

t

(
∥θ̂t−1 − θ∗∥V̂t

+ ∥θ̃t − θ̂t−1∥V̂t

)
≤2βt(δ)∥xt,at

∥V̂−1
t

Since rt ≤ 2, we have

rt ≤ 2min(βt(δ)∥xt∥V̂−1
t
, 1) ≤ 2βt(δ)min(∥xt∥V̂−1

t
, 1).

Then, we have

T∑
t=1

rt ≤

√√√√T

T∑
t=1

r2t ≤ 2βT (δ)

√
2mT log

(
1 +

TL2

mλ

)
where the last step follow from the following lemma:
Lemma 1.

T∑
t=1

min(1, ∥xt∥2V̂−1
t−1

) ≤ 2m log

(
1 +

TL2

mλ

)
.

3.4 Discussion
Briefly, our bound can be written as

Õ((
√
m+ d log(1 + ∆T /λ) +

√
λ+∆T )

√
mT ).

According to Theorem 1, we have

∆T ≤ ∥XT − (XT )k∥2F /(m− k)

for all 0 < k < m. Thus, ∆T is very small when the covari-
ance matrix is approximately low-rank. Especially, when the
rank of covariance matrix is less than m, we have ∆T = 0.
In this situation, our regret bound becomes Õ(m

√
T ). When

the covariance matrix is not low-rank, our method signif-
icantly reduces the influence of ∆T when compared with
SOFUL [Kuzborskij et al., 2019]. Note that the regret bound
of SOFUL is

Õ((1 + ∆T /λ)
3/2(m+ d log(1 + ∆T /λ))

√
T ).

Our method reduces the order of ∆T from 3/2 to 1/2. In ad-
dition, our regret bound decouples the dimension d and ∆T ,
which further reduces the influence of ∆T . Finally, our bound
is less sensitive to the parameter λ (which is usually a small
number in practice) because the term ∆T /λ is in the loga-
rithmic function. Overall, our method is more effective and
robust than SOFUL. We summarize the comparison between
our theoretical results and state-of-the-art methods in Table
1. From the table, we can find that our method has the best
regret bound in high dimensional case.

4 Experiments
In this section, we empirically verify the efficiency and ef-
fectiveness of our CBSCFD algorithm. We conduct experi-
ments on both synthetic data and real-world data sets. The
baseline approaches include LinUCB [Abbasi-Yadkori et al.,
2011], CBRAP [Yu et al., 2017] and SOFUL [Kuzborskij et al.,
2019]. For CBRAP algorithm, we use the Gaussian random
matrix as the projection matrix because it has better perfor-
mance. We conduct all experiments on a Linux server which
contains 8 processors and has total memory of 32GB. The
code is implemented in Matlab R2017b.

4.1 Synthetic Data
We generated a synthetic data set with 100 arms and 2000
features per context. Specifically, all contexts xt,a ∈ R2000

are drawn independently from multivariate Gaussian distri-
butions xt,a ∼ MVN(1, I2000). The true parameter θ∗ is
computed as θ∗ = θ′/∥θ′∥2 where θ′ is drawn from a multi-
variate Gaussian distribution θ′ ∼ MVN(0, I2000). We set
T = 1000 and run the experiments for 20 times. The parame-
ter β of all methods is searched in {10−4, 10−3, . . . , 1} and λ
is searched in {2×10−4, 2×10−3, . . . , 2×104}. We choose
the best values for each approach and report the average re-
sults in Figure 1.

In Figure 1, we can find that the running time of LinUCB
is much larger than other three methods which use matrix
sketching. The CBRAP is a little faster than SOFUL and
CBSCFD. The reason is that SOFUL and CBSCFD require to per-
form SVD decomposition, which is much slower than matrix
multiplication though they have the same time complexity.
Compare the cumulative regrets in Figure 1, we can find that
our CBSCFD outperforms other approaches.

4.2 Online Classification
Then, we perform online classification to evaluate the per-
formance of our methods. We follow the experiments setup
of [Kuzborskij et al., 2019]. Specifically, we fit the online
classification problem into the contextual bandit setting as
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Figure 1: Comparison of the average cumulative regrets and running
time on the synthetic data set.

Data set #Samples #Features #Classes Sketch size
MNIST 60000 784 10 10

CIFAR10 50000 3072 10 20

Table 2: Summary of Data sets for Contextual Bandits.

follows. Given a data set with data in K clusters, we first
choose one cluster as the target cluster. In each round the
environment randomly draws one sample from each class
and composes a set of contexts of K samples. The learner
chooses one sample from the set and observe the reward cor-
responding to whether the selected sample belongs to the tar-
get cluster. The reward is 1 if the selected sample comes
from the target cluster, and is 0 otherwise. We perform
our experiments on two real-world data sets: MNIST [Le-
Cun et al., 1998] and CIFAR10 [Krizhevsky and Hinton,
2009]. We summarize the statistic information of both data
sets in Table 2. For MNIST data set, we perform experi-
ments with sketch sizes m = 10. For CIFAR10, we set the
sketch sizes m = 20. As previous experiment, the param-
eter β is searched in {10−4, 10−3, . . . , 1} and λ is searched
in {2 × 10−4, 2 × 10−3, . . . , 2 × 104}. We run the experi-
ments for 20 times and report the average online mistakes in
Figure 2. We find that our CBSCFD algorithm outperforms all
other methods on MNIST and CIFAR10 data sets. This result
validates the effectiveness of our method.

4.3 Robustness of CBSCFD
Finally, we investigate the robustness of our method. We
compare the sensitivity to parameter λ between our method
and baseline approaches. Since CBRAP always sets λ = 1, we
do not include it as baseline. In this experiment, we fix the
parameter β = 0.01 and m = 10. Then we perform experi-
ments on MNIST data set with {2× 10−4, 2× 10−3, . . . , 2×
104}. We present the result in Figure 3. This figure shows
that the performance of CBSCFD only changes slightly when
λ is changed. But the performance of other two methods sig-
nificantly depend on the choice of λ. This result validates our
theoretical analysis in Property 2 and shows that our method
is robust than others.

4.4 Discussion
It is surprising to see that our method outperforms LinUCB,
which adopts no approximations. This happens because our
experiments focuses on high dimensional setting, i.e., d ≈ T .
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Figure 2: The comparison of online mistakes among different con-
textual bandit algorithms on real-world data sets with different
sketch sizes.
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Figure 3: Total mistakes with different choice of parameter λ.

When the iteration round t < d, the matrix XtX
⊤
t is singular.

LinUCB uses a constant regularization and enhances the spec-
trum by λ. When the regulrization parameter λ is very small,
the matrix Vt is ill-conditioned, which makes LinUCB unsta-
ble. On the other hand, CBSCFD enhances the spectrum by
∆t + λ, where ∆t is updated in each round and no more than
the smallest nonzero singular values of XtX

⊤
t . Thus, the ap-

proximated covariance matrix may have better performance
than the original one. Also, the covariance matrix of CBSCFD
is more well-conditioned than that of LinUCB, which makes
the algorithm more stable and less sensitive to λ.

5 Conclusions

In this paper, we present a variant of FD, which is called
SCFD, for matrix sketching. We then propose CBSCFD algo-
rithm for high-dimensional linear contextual bandits based on
SCFD. Our method is much more efficient than LinUCB and
require less space. Compared with previous methods which
use matrix sketching to accelerate linear contextual bandits,
our method has better upper regret bound and more robust.
Finally, the experiments demonstrated the efficiency, effec-
tiveness and robustness of CBSCFD.
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A Proof of Lemmas
We present some lemmas used in our proofs.
Lemma 2 (Property 1 and Property 2 of [Ghashami et al.,
2016]). For any vector w ∈ Rd, we have 0 ≤ ∥Xtw∥22 −
∥Ztw∥22 ≤ ∆t∥w∥22.
Lemma 3. If ∥xt,a∥2 ≤ L, then

det(V̂t) ≤ (λ+∆t)
d−m(λ+ tL2/m)m.

Proof. Since tr(Z⊤
t Zt) = tr(Z⊤

t−1Zt−1)+ tr(xtx
⊤
t )−mδt,

we have tr(Z⊤
TZT ) =

∑T
t=1 tr(xtx

⊤
t ) − m∆T ≤ TL2 −

m∆T . Since λi(V̂T ) = αT for i ∈ {m+1, . . . , d}, we have

det(V̂T ) ≤αd−m
T

m∏
i=1

λi(V̂T )

≤αd−m
T

(∑m
i=1 λi(V̂T )

m

)m

=αd−m
T

(
αT +

∑m
i=1 λi(Z

T
TZT )

m

)m

=αd−m
T

(
αT +

tr(ZT
TZT )

m

)m

≤αd−m
T

(
αT −∆T +

TL2

m

)m

=(λ+∆n)
d−m

(
λ+

TL2

m

)m

(6)

Lemma 4. For any vector w∈Rd, we have ∥w∥2Vt
≤∥w∥2

V̂t
.

Proof. For any vector w, we have

∥w∥2Vt
− ∥w∥2

V̂t
=w⊤(X⊤

t Xt + λI− Z⊤
t Zt − αtI)w

=w⊤(X⊤
t Xt − Z⊤

t Zt −∆tI)w

=w⊤(X⊤
t Xt − Z⊤

t Zt)w −∆t∥w∥22
≤∆t∥w∥22 −∆t∥w∥22 By Lemma 2

=0

Lemma 1.
T∑

t=1

min(1, ∥xt∥2V̂−1
t−1

) ≤ 2m log

(
1 +

TL2

mλ

)
.

Proof. Let Mt=V̂t−1 + xtx
⊤
t . For i ∈ {1, 2, . . . ,m}, we

have λi(Mt)=λi(V̂t). For i ∈ {m + 1, . . . , d}, we have
λi(Mt) = αt−1 and λi(V̂t) = αt.

Then we can obtain det(V̂t)
det(Mt)

=
(

αt

αt−1

)d−m

. Thus,

det(Mt) =det(V̂t−1 + xtx
⊤
t )

=det(V̂t−1) det(I+ V̂−1
t−1xtx

⊤
t )

=det(V̂t−1)(1 + ∥xt∥2V̂−1
t−1

)

Then, we have

det(V̂n) =

(
αt

αt−1

)d−m

det(Mn)

=

(
αt

αt−1

)d−m

det(V̂n−1)(1 + ∥xn∥2V̂−1
n−1

)

=

(
αn

α0

)d−m

det(λI)

n∏
t=1

(1 + ∥xt∥2V̂−1
t−1

)

=

(
λ+∆n

λ

)d−m

det(λI)

n∏
t=1

(1 + ∥xt∥2V̂−1
t−1

)

Then, we have

n∑
t=1

log(1+∥xt∥2V̂−1
t−1

) ≤ log
det(V̂n)

det(λI)
+(d−m) log

(
λ

λ+∆n

)
.

Since min{1, x} ≤ 2 log(1 + x) for x ≥ 0, we have

T∑
t=1

min(1, ∥xt∥2V̂−1
t−1

)

≤2
T∑

t=1

log(1 + ∥xt∥2V̂−1
t−1

)

≤2 log det(V̂T )− 2d log λ+ 2(d−m) log

(
λ

λ+∆n

)
≤2m log

(
1 +

TL2

mλ

)
The last step holds by Lemma 3.

B Proof of Theorem 2
Proof. Define Yt = [y1, y2, . . . , yt]

⊤, et =
[η1, η2, . . . , ηt]

⊤, where ηt is the conditionally R-
sub-Gaussian noise in the t-th round. Then we have
θ̂t = V̂−1

t XtYt, Yt = Xtθ∗ + e. Consider the estimated
vector θ̂t, we have

θ̂t =V̂−1
t XtYt

=
(
Z⊤

t Zt + αtI
)−1

X⊤
t (Xtθ∗ + et)

=
(
Z⊤

t Zt + αtI
)−1

X⊤
t et +

(
Z⊤

t Zt + αtI
)−1

X⊤
t Xtθ∗

=
(
Z⊤

t Zt + αtI
)−1

X⊤
t et + θ∗

+
(
Z⊤

t Zt + αtI
)−1 (

X⊤
t Xt − Z⊤

t Zt − αtI
)
θ∗

=V̂−1
t X⊤

t et + θ∗ + V̂−1
t Dtθ∗

(7)

Let Dt = X⊤
t Xt − Z⊤

t Zt − αtI. For any unit vector w,
we have

w⊤Dtw =w⊤(X⊤
t Xt − Z⊤

t Zt − αtI)w

=w⊤(X⊤
t Xt − Z⊤

t Zt)w − αt



According to Lemma 2, we can get
0 ≤ w⊤(X⊤

t Xt − Z⊤
t Zt)w ≤ ∆t,

which means −αt ≤ w⊤Dtw ≤ ∆t − αt.
Since αt = λ + ∆t and Dt is symmetric, we can get

|w⊤Dtw| ≤ λ+∆t, which indicates that ∥Dt∥2 ≤ λ+∆t.
For any vector p, we have

|p⊤(θ̂t − θ∗)|

=|p⊤V̂−1
t X⊤

t et + p⊤V̂−1
t Dtθ∗|

=|p⊤V̂−1
t VtV

−1
t X⊤

t et + p⊤V̂−1
t Dtθ∗|

=|⟨VtV̂
−1
t p,X⊤

t et⟩V−1
t
|+ |⟨p,Dtθ∗⟩V̂−1

t
|

≤∥VtV̂
−1
t p∥V−1

t
∥X⊤

t et∥V−1
t

+ ∥p∥V̂−1
t
∥Dt∥2∥θ∗∥V̂−1

t

≤∥VtV̂
−1
t p∥V−1

t
∥X⊤

t et∥V−1
t

+ (λ+∆t)∥p∥V̂−1
t
∥θ∗∥V̂−1

t

=∥V̂−1
t p∥Vt

∥X⊤
t et∥V−1

t
+ (λ+∆t)∥p∥V̂−1

t
∥θ∗∥V̂−1

t

(8)
The first step holds by Eq.(7) and the fourth step is obtained
by Cauchy-Schwartz inequality.
Let p = V̂t(θ̂t − θ∗), then we can get

|p⊤(θ̂t − θ∗)| = ∥θ̂t − θ∗∥2V̂t
(9)

∥V̂−1
t p∥Vt = ∥θ̂t − θ∗∥Vt (10)

∥p∥V̂−1
t

= ∥θ̂t − θ∗∥V̂t
. (11)

By Lemma 4 we know that ∥θ̂t−θ∗∥2Vt
≤ ∥θ̂t−θ∗∥2V̂t

, which
indicates that

∥V̂−1
t p∥Vt ≤ ∥θ̂t − θ∗∥V̂t

(12)
Using Theorem 1 of [Abbasi-Yadkori et al., 2011], we can
bound ∥X⊤

t et∥V−1
t

as follows:

∥X⊤
t et∥V−1

t
≤ R

√
2 log

(
det(Vt)1/2 det(λI)−1/2

δ

)
(13)

Combine Eq. (9), (12), (13) and (8), we can obtain

∥θ̂t − θ∗∥2V̂t
≤∥θ̂t − θ∗∥V̂t

R

√
2 log

(
det(Vt)1/2

δ det(λI)1/2

)
+ (λ+∆t)∥θ̂t − θ∗∥V̂t

∥θ∗∥V̂−1
t

≤∥θ̂t − θ∗∥V̂t
R

√
2 log

(
det(Vt)1/2

δ det(λI)1/2

)
+
√

λ+∆t∥θ̂t − θ∗∥V̂t
∥θ∗∥2,

(14)
where we use

∥θ∗∥2V̂−1
t

≤λmax(V̂
−1
t )∥θ∗∥22

=
1

λmin(V̂t)
∥θ∗∥22 ≤

1

λ+∆t
∥θ∗∥22.

Lemma 4 indicates that V̂t ⪰ Vt. Thus we have det(V̂t) ≥
det(Vt). Combining Lemma 3 and Eq. (14), we have

∥θ̂t − θ∗∥V̂t

≤R

√
2 log

(
det(Vt)1/2

δ det(λI)1/2

)
+
√
λ+∆t∥θ∗∥2

≤R

√
2 log

1

δ
+m log

(
1 +

tL2

mλ

)
+d log

(
1 +

∆t

λ

)
+ S

√
λ+∆t ≜ βt(δ)

(15)

According to Lemma 2 of [Kuzborskij et al., 2019], we
know that the procedure of choosing at is equivalent to solv-
ing the following problem:

(xt,at
, θ̃t) = argmaxx⊤θ s.t. (x, θ) ∈ Dt × Ct−1,

where Dt is the decision set that xt,a belongs to. Thus, the
action at chosen by Algorithm 2 satisfies x⊤

t,at
θ̃t ≥ x∗

t
⊤θ∗.

Combine Eq.(15), we know that the action at choosed by Al-
gorithm 2 satisfies x⊤

t,at
θ̃t ≥ x∗

t
⊤θ∗. We next consider the

regret rt at round t.

rt =x∗⊤
t,at

θ∗ − x⊤
t,at

θ∗

≤x⊤
t,at

θ̃t − x⊤
t,at

θ∗

=x⊤
t,at

(θ̂t−1 − θ∗) + x⊤
t,at

(θ̃t − θ̂t−1)

≤∥xt,at
∥V̂−1

t

(
∥θ̂t−1 − θ∗∥V̂t

+ ∥θ̃t − θ̂t−1∥V̂t

)
≤2βt(δ)∥xt,at

∥V̂−1
t

Since rt ≤ 2, we have

rt ≤ 2min(βt(δ)∥xt∥V̂−1
t
, 1) ≤ 2βt(δ)min(∥xt∥V̂−1

t
, 1).

Then, we have

RT =

n∑
t=1

rt ≤

√√√√T

n∑
t=1

r2t

≤2βT (δ)

√√√√n

T∑
t=1

min(∥xt,at
∥2
V̂−1

t

, 1)

≤2βT (δ)

√
2mT log

(
1 +

TL2

mλ

)
where the last step follow from Lemma 1.
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