Solution to Homework 1

Total 30 points

Problem 1. (8 points) For each of the following sequence, determine the rate of convergence and the rate constant:

- (a) $x_k = 1 + 5 \times 10^{-2k}$.
- (b) $x_k = 2^{-2^k}$.
- (c) $x_k = 3^{-k^2}$.
- (d) $x_{k+1} = x_k/2 + 2/x_k, x_1 = 4.$

Solution.

- (a) As $\lim_{k \to \infty} x_k = 1$, and $\lim_{k \to \infty} \frac{5 \times 10^{-2(k+1)}}{5 \times 10^{-2k}} = 0.01$, thus r = 1, C = 0.01.
- (b) As $\lim_{k \to \infty} x_k = 0$, and $\lim_{k \to \infty} \frac{2^{-2^{k+1}}}{(2^{-2^k})^2} = 1$, thus r = 2, C = 1.
- (c) As $\lim_{k \to \infty} x_k = 0$, and $\lim_{k \to \infty} \frac{3^{-(k+1)^2}}{3^{-k^2}} = 0$, thus r = 1, C = 0.
- (d) $\lim_{k \to \infty} x_k = 2$, and $\lim_{k \to \infty} \frac{x_{k+1}-2}{(x_k-2)^2} = \lim_{k \to \infty} \frac{x_k/2 + 2/x_k 2}{(x_k-2)^2} = \lim_{k \to \infty} \frac{1}{2x_k} = \frac{1}{4}$, thus r = 2, $C = \frac{1}{4}$.

Problem 2. (10 points) Judge the properties of the following sets (openness, closeness, boundedness, compactness) and give their interiors, closures, and boundaries:

- (a) $\mathcal{C}_1 = \emptyset$.
- (b) $\mathcal{C}_2 = \mathbb{R}^n$.
- (c) $C_3 = \{(x, y)^\top | x \ge 0, y > 0\}.$
- (d) $\mathcal{C}_4 = \{k | k \in \mathbb{Z}\}.$
- (e) $C_5 = \{(1/k, \sin k) | k \in \mathbb{Z}\}.$

Solution.

- (a) C_1 is open, closed, bounded and compact. $C_1^{\circ} = \overline{C}_1 = \partial C_1 = \emptyset$.
- (b) C_2 is open and closed. $C_2^{\circ} = \overline{C}_2 = \mathbb{R}^n$ and $\partial C_2 = \emptyset$.

(c)
$$C_3^{\circ} = \{(x,y)^{\mathrm{T}} | x > 0, y > 0\}, \ \overline{C}_3 = \{(x,y)^{\mathrm{T}} | x \ge 0, y \ge 0\} \text{ and } \partial C_3 = \{(x,y)^{\mathrm{T}} | x = 0, y \ge 0\} \cup \{(x,y)^{\mathrm{T}} | x \ge 0, y = 0\}.$$

(d)
$$\mathcal{C}_4$$
 is closed. $\mathcal{C}_4^{\circ} = \emptyset$ and $\overline{\mathcal{C}}_4 = \partial \mathcal{C}_4 = \{k | k \in \mathbb{Z}\}.$

(e)
$$\mathcal{C}_5$$
 is bounded. $\mathcal{C}_5^{\circ} = \emptyset$ and $\overline{\mathcal{C}}_5 = \partial \mathcal{C}_5 = \{k | (1/k, \sin k)^\top | k \in \mathbb{Z}\} \cup \{(0, y)^\top | -1 \le y \le 1\}.$

Problem 3. (4 points) Compute the **gradient** and the **Hessian** of the following functions (write in vector or matrix form, rather than entrywise), give details:

(a)
$$f(\mathbf{x}) = (\mathbf{a}^{\top} \mathbf{x})(\mathbf{b}^{\top} \mathbf{x}).$$

(b) $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2.$
(c) (bonus) $f(\mathbf{x}) = \log \sum_{i=1}^m \exp(\mathbf{a}_i^{\top} \mathbf{x} + b_i).$

Solution.

(a)

$$\nabla f(\mathbf{x}) = \frac{\partial (\mathbf{a}^{\top} \mathbf{x})}{\partial \mathbf{x}} (\mathbf{b}^{\top} \mathbf{x}) + (\mathbf{a}^{\top} \mathbf{x}) \frac{\partial (\boldsymbol{b}^{\top} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{a} (\mathbf{b}^{\top} \mathbf{x}) + (\mathbf{a}^{\top} \mathbf{x}) \mathbf{b} = (\mathbf{a} \mathbf{b}^{\top} + \mathbf{b} \mathbf{a}^{\top}) \mathbf{x}.$$
$$\nabla^2 f(\mathbf{x}) = (\mathbf{a} \mathbf{b}^{\top} + \mathbf{b} \mathbf{a}^{\top}).$$

(b) As
$$f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^\top (\mathbf{A}\mathbf{x} - \mathbf{b})$$
, we know

$$\nabla f(\mathbf{x}) = \mathbf{A}^{\top} (\mathbf{A}\mathbf{x} - \boldsymbol{b}).$$
$$\nabla^2 f(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{A}.$$

(c) Let
$$g(\mathbf{y}) = \log \sum_{i=1}^{m} \exp(y_i)$$
, then $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x} + \mathbf{b})$ where $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]^{\top}$ and $\mathbf{b} = [b_1, \dots, b_m]^{\top}$. On the other hand, let $h(\mathbf{y}) = \sum_{i=1}^{m} \exp(y_i)$, then $g(\mathbf{y}) = \log(h(\mathbf{y}))$. According to the chain rule (page 38 and 41 of lecture 1), we can get

$$\nabla g(\mathbf{y}) = \frac{1}{\sum_{i=1}^{m} \exp(y_i)} \begin{bmatrix} \exp(y_1) \\ \vdots \\ \exp(y_m) \end{bmatrix}.$$

$$\nabla^2 g(\mathbf{y}) = \frac{1}{\sum_{i=1}^{m} \exp(y_i)} \begin{bmatrix} \exp(y_1) \\ & \ddots \\ & \\ & \exp(y_m) \end{bmatrix} - \frac{1}{\left(\sum_{i=1}^{m} \exp(y_i)\right)^2} \begin{bmatrix} \exp(y_1) \\ \vdots \\ \exp(y_m) \end{bmatrix} \left[\exp(y_1), \dots, \exp(y_m) \right]^\top$$
Thus we have

Thus we have

$$\nabla f(\mathbf{x}) = \mathbf{A}^{\top} \nabla g(\mathbf{A}\mathbf{x} + \mathbf{b}) = \frac{1}{\mathbf{1}^{\top} \mathbf{z}} \mathbf{A}^{\top} \mathbf{z}$$
$$\nabla^2 f(\mathbf{x}) = \mathbf{A}^{\top} \nabla^2 g(\mathbf{A}\mathbf{x} + \mathbf{b}) \mathbf{A} = \mathbf{A}^{\top} \left(\frac{1}{\mathbf{1}^{\top} \mathbf{z}} \operatorname{diag}(\mathbf{z}) - \frac{1}{(\mathbf{1}^{\top} \mathbf{z})^2} \mathbf{z} \mathbf{z}^{\top} \right) \mathbf{A}.$$

where $z_i = \exp(\mathbf{a}_i^\top \mathbf{x} + b_i)$ and $\operatorname{diag}(\mathbf{x})$ denotes a square matrix which has \mathbf{x} on the diagonal and zero everywhere else.

Problem 4. (8 points) Which of the following sets are convex? Explain your answer.

- (a) A wedge, i.e., a set of the form $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{a}_1^{\mathrm{T}} \mathbf{x} \le b_1, \mathbf{a}_2^{\mathrm{T}} \mathbf{x} \le b_2\}.$
- (b) The set of points closer to a given point than a given set, i.e., $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_0\|_2 \leq \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{y} \in S\}$ where $S \subseteq \mathbb{R}^n$.
- (c) The set of points closer to one set than another, i.e., $\{\mathbf{x}|\mathbf{dist}(\mathbf{x}, S) \leq \mathbf{dist}(\mathbf{x}, T)\}$ where $S, T \subseteq \mathbb{R}^n$, and $\mathbf{dist}(\mathbf{x}, S) = \inf\{\|\mathbf{x} \mathbf{z}\|_2 | \mathbf{z} \in S\}$.
- (d) The set of points whose distance to **a** does not exceed a fixed fraction θ of the distance to **b**, i.e., the set $\{\mathbf{x} | \|\mathbf{x} \mathbf{a}\|_2 \le \theta \|\mathbf{x} \mathbf{b}\|_2\}$ ($\mathbf{a} \ne \mathbf{b}$ and $0 \le \theta \le 1$).

Solution.

- (a) A wedge is convex. If $\mathbf{a}_1^T \mathbf{x} \leq b_1, \mathbf{a}_2^T \mathbf{x} \leq b_2, \mathbf{a}_1^T \mathbf{y} \leq b_1, \mathbf{a}_2^T \mathbf{y} \leq b_2$ and $0 \leq \theta \leq 1$, then it's obvious that $\mathbf{a}_1^T(\theta \mathbf{x} + (1-\theta)\mathbf{y}) \leq b_1, \mathbf{a}_2^T(\theta \mathbf{x} + (1-\theta)\mathbf{y}) \leq b_2$. Alternatively, you can regard a wedge as an intersection of two half-spaces.
- (b) The set of points closer to a given point than a given set is convex. In fact, the condition $\|\mathbf{x} \mathbf{x}_0\|_2 \le \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{y} \in S$ is equivalent to $(\mathbf{y} \mathbf{x}_0)^T \mathbf{x} \le \frac{1}{2} (\|\mathbf{y}\|_2^2 \|\mathbf{x}_0\|_2^2)$ for any $\mathbf{y} \in S$. Therefore, the set can be rewritten as

$$\bigcap_{\mathbf{y}\in S} \{\mathbf{x} | (\mathbf{y} - \mathbf{x}_0)^{\mathrm{T}} \mathbf{x} \leq \frac{1}{2} (\|\mathbf{y}\|_2^2 - \|\mathbf{x}_0\|_2^2) \},$$

which is an intersection of convex sets.

- (c) The set of points closer to one set than another may be non-convex. For example, we take $S = \{-2, 2\}, T = \{0\}$, then the set is $(-\infty, -1] \cup [1, \infty)$, which is non-convex.
- (d) The set of points whose distance to **a** does not exceed a fixed fraction θ of the distance to **b** is convex. When $\theta = 0$ or $\theta = 1$, the conclusion is trivial. When $\theta \in (0, 1)$, the condition $\|\mathbf{x} \mathbf{a}\|_2 \le \theta \|\mathbf{x} \mathbf{b}\|_2$ is equivalent to

$$\left\|\mathbf{x} - \frac{\mathbf{a} - \theta^2 \mathbf{b}}{1 - \theta^2}\right\|_2^2 \le \frac{1}{1 - \theta^2} \left(\frac{\|\mathbf{a} - \theta\mathbf{b}\|_2^2}{1 - \theta^2} - \|\mathbf{a}\|_2^2 + \theta^2 \|\mathbf{b}\|_2^2\right).$$

Therefore, the set is a ball, which is convex.