Optimization for Machine Learning 机器学习中的优化方法

^陈 程

^华东师范大^学 ^软件工程学^院

chchen@sei.ecnu.edu.cn

Outline

Stochastic optimization problem:

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \underbrace{\mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]}_{\text{expectation setting}},
$$

where the random variable $\xi \sim \mathcal{D}$.

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t, \xi_t).
$$

Stochastic variance reduced gradient (SVRG)

The finite-sum setting is a special case of the expectation setting:

$$
F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).
$$

Stochastic variance reduced gradient (SVRG):

$$
\underbrace{\nabla f_i(\mathbf{x}_t) - \nabla f_i(\tilde{\mathbf{x}})}_{\rightarrow 0 \text{ if } \mathbf{x}_t \approx \tilde{\mathbf{x}}} + \underbrace{\nabla F(\tilde{\mathbf{x}})}_{\rightarrow 0 \text{ if } \tilde{\mathbf{x}} \approx \mathbf{x}^*}
$$

where $\tilde{\mathbf{x}}$ is a history point updated every $O(\kappa)$ rounds.

Iteration complexity

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})=\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x}).
$$

Table: Convergence rate for the strongly convex case

Stochastic nonconvex optimization

Stochastic nonconvex optimization:

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})\triangleq \mathbb{E}_{\xi}[f(\mathbf{x};\xi)],
$$

where $f(\mathbf{x}; \xi)$ is L-smooth and potentially nonconvex.

Our goal is to find a first-order stationary point x such that

 $\mathbb{E}[\|\nabla F(\mathbf{x})\|_2] \leq \epsilon.$

Assumption:

$$
\mathbb{E}_{\xi}[\|f(\mathbf{x},\xi)-F(\mathbf{x})\|_2^2] \leq \sigma^2.
$$

SGD for nonconvex optimization

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t, \xi_t).
$$

- Return \bar{x} chosen uniformly at random from $\{x_0, \ldots, x_{t-1}\}.$
- **If** we choose

$$
\eta = \eta_t = \frac{1}{L} \min \left\{ \frac{\epsilon^2}{2\sigma^2}, 1 \right\} \text{ and } t = \frac{4(F(\mathbf{x}_0) - F(\mathbf{x}^*))}{\epsilon^2 \eta},
$$

then

 $\mathbb{E}[\|\nabla F(\bar{\mathbf{x}})\|_2] \leq \epsilon.$

Stochastic recursive gradient

Stochastic recursive gradient estimates:

$$
\mathbf{g}_t = \nabla f_i(\mathbf{x}_t) - \nabla f_i(\mathbf{x}_{t-1}) + \mathbf{g}_{t-1}
$$

where *i* is randomly sampled from $\{1, \ldots, n\}$.

comparison to SVRG (use a fixed snapshot point for the entire epoch) $\nabla f_i(\mathbf{x}_t) - \nabla f_i(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$

Unlike SVRG, \mathbf{g}_t is NOT an unbiased estimator of $\nabla F(\mathbf{x}_t)$.

- We have $\mathbb{E}_t[\mathbf{g}_t \nabla F(\mathbf{x}_t)] = \mathbf{g}_{t-1} \nabla F(\mathbf{x}_{t-1}).$
- If we average out all randomness, we have $\mathbb{E}[\mathbf{g}_t] = \mathbb{E}[\nabla F(\mathbf{x}_t)].$

StochAstic Recursive grAdient algoritHm (SARAH)

Convergence rates for finite-sum setting

Table: Convergence rate for the strongly convex case

Table: Convergence rate for the smooth and convex case

Convergence Rates for Finite-sum Setting

Table: Convergence rate for the smooth and nonconvex case

Outline

2 [Adaptive & other SGD methods](#page-11-0)

Momentum variant of SGD (Polyak, 1964):

pick a stochastic gradient g_t $m_t = \beta m_{t-1} + (1 - \beta) g_t$ (momentum term) $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{m}_t$

- is the stochastic variant of heavy-ball method
- key element of deep learning optimizers

Adagrad is an adaptive variant of SGD

pick a stochastic gradient g_t $\mathbf{r}_t = \mathbf{r}_{t-1} + \mathbf{g}_t \odot \mathbf{g}_t$ $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\eta_t}{\delta + \eta_t}$ $\frac{\partial u}{\partial t} \frac{\partial u}{\partial t}$ \odot g_t

- chooses an adaptive, coordinate-wise learning rate
- variants: Adadelta, Adam, RMSprop,...

RMSprop is a moving average variant of AdaGrad

pick a stochastic gradient
$$
\mathbf{g}_t
$$

\n $\mathbf{r}_t = \beta \mathbf{r}_{t-1} + (1 - \beta) \mathbf{g}_t \odot \mathbf{g}_t$
\n $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\eta_t}{\delta + \sqrt{\mathbf{r}_t}} \odot \mathbf{g}_t$

• faster forgetting of older weights

Adam

Adam is a momentum variant of RMSprop

pick a stochastic gradient \mathbf{g}_t $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ (momentum term) $\mathbf{r}_t = \beta_2 \mathbf{r}_{t-1} + (1 - \beta_2) \mathbf{g}_t \odot \mathbf{g}_t$ $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\eta_t}{\delta + \eta_t}$ $\frac{m}{\delta + \sqrt{\mathsf{r}_t}} \odot \mathsf{m}_t$

o strong performance in practice, e.g. for self-attention networks • may not converge in some special cases, see [4]

Outline

[Stochastic optimization](#page-1-0)

Minimax optimization:

min max $f(\mathsf{x}, \mathsf{y})$
×∈X' y∈Y

Applications:

- **•** Adversarial learning
- **Generative Adversarial Network (GAN)**
- **o** Two-player games

Examples: adversarial learning

noise

57.7% confidence 99.3 % confidence

Examples: adversarial learning

In supervised learning, we consider

$$
\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})\triangleq\frac{1}{n}\sum_{i=1}^nI(\mathbf{x};\mathbf{a}_i,b_i)+\lambda R(\mathbf{x}).
$$

In adversarial training, we use a perturbed \mathbf{y}_i for each data $\mathbf{a}_i.$

It leads to the following minimax optimization problem

$$
\min_{\mathbf{x}\in\mathbb{R}^d}\max_{\mathbf{y}_i\in\mathcal{Y}_i,i=1,\ldots,n}\ \tilde{f}(\mathbf{x},\mathbf{y}_1,\ldots,\mathbf{y}_n)\triangleq\frac{1}{n}\sum_{i=1}^n I(\mathbf{x};\mathbf{y}_i,b_i)+\lambda R(\mathbf{x}),
$$

where $\mathcal{Y}_i = \{ \mathbf{y} : ||\mathbf{y} - \mathbf{a}_i|| \leq \delta \}$ for some small $\delta > 0$.

Examples: generative adversarial network (GAN)

Given *n* data samples $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^d$ from an unknown distribution, GAN aims to generate additional samples with the same distribution as the observed samples.

We formulate the minimax optimization problem

$$
\min_{\mathbf{w}\in\mathcal{W}}\max_{\theta\in\Theta}\ \frac{1}{n}\sum_{i=1}^n\log D(\theta,\mathbf{a}_i)+\mathbb{E}_{\mathbf{z}\sim\mathcal{N}(\mathbf{0},\mathbf{I})}\big[\log(1-D(\theta,G(\mathbf{w},\mathbf{z})))\big].
$$

- \bullet $D(\theta, \cdot)$ is the discriminator that tries to separate the generated data $G(\mathbf{w}; \mathbf{z})$ from the real data samples \mathbf{a}_i
- **2** $G(\mathbf{w},\cdot)$ is the generator that tries to make $D(\theta,\cdot)$ cannot separate the distributions of $G(w; z)$ and a_i

Examples: two-player games

Consider the payoff matrix of rock-paper-scissor:

The two-player rock-paper-scissor games aim to optimize:

min max $\bm{{\mathsf{x}}}^\top\mathsf{A}\bm{{\mathsf{y}}}$ x∈X y∈Y

• Pure strategy: $\mathcal{X} = \mathcal{Y} = \{e_1, e_2, e_3\}$, not a convex set

• Mixed strategy: $\mathcal{X} = \mathcal{Y} = \Delta$, simplex over 3 dimension

Properties of minimax optimization

In general, we have

$$
\max_{\mathbf{y} \in \mathcal{Y}} \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \mathbf{y}) \le \min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})
$$

Von Neumann's Minimax Theorem. If both \mathcal{X} and \mathcal{Y} are compact convex sets, and $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is convex-concave, then

$$
\max_{\mathbf{y} \in \mathcal{Y}} \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})
$$

We measure the optimality of (\hat{x}, \hat{y}) in terms of the **duality gap**:

$$
\text{gap} \triangleq \max_{\mathbf{y} \in \mathcal{Y}} f(\hat{\mathbf{x}}, \mathbf{y}) - \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \hat{\mathbf{y}}) \geq 0
$$

Review:

- *f* is L-Lipschitz if $|f(\mathbf{z}_1) f(\mathbf{z}_2)| \le L ||\mathbf{z}_1 \mathbf{z}_2||_2$.
- f is ℓ -smooth if $\|\nabla f(\mathsf{z}_1) \nabla f(\mathsf{z}_2)\|_2 \leq \ell \| \mathsf{z}_1 \mathsf{z}_2 \|_2$.

Projected gradient descent ascent:

$$
\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_t, \mathbf{y}_t)
$$
\n
$$
\tilde{\mathbf{y}}_{t+1} = \mathbf{y}_t + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_t, \mathbf{y}_t)
$$
\n
$$
\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{X}}(\tilde{\mathbf{x}}_{t+1})
$$
\n
$$
\mathbf{y}_{t+1} = \mathcal{P}_{\mathcal{Y}}(\tilde{\mathbf{y}}_{t+1})
$$

Convergence rates of GDA

If f is L-Lipschitz and convex-concave, let the diameter of X and Y be R. Then for fixed t with learning rate $\eta = \frac{R}{L}$ $\frac{\kappa}{L\sqrt{t}}$, we have

$$
\max_{\mathbf{y}\in\mathcal{Y}} f\left(\frac{1}{t}\sum_{k=1}^t \mathbf{x}_k, \mathbf{y}\right) - \min_{\mathbf{x}\in\mathcal{X}} f\left(\mathbf{x}, \frac{1}{t}\sum_{k=1}^t \mathbf{y}_k\right) \leq \frac{2LR}{\sqrt{t}}.
$$

If f is ℓ -smooth and convex-concave, let the diameter of X and Y be R. Then for fixed t with $\eta = \frac{R}{L}$ $\frac{\mathcal{R}}{L\sqrt{t}}$ where $L=2\ell R+\left\|\nabla f(\mathbf{x}_0,\mathbf{y}_0)\right\|_2$, we have

$$
\max_{\mathbf{y}\in\mathcal{Y}} f\left(\frac{1}{t}\sum_{k=1}^t \mathbf{x}_k, \mathbf{y}\right) - \min_{\mathbf{x}\in\mathcal{X}} f\left(\mathbf{x}, \frac{1}{t}\sum_{k=1}^t \mathbf{y}_k\right) \leq \frac{2LR}{\sqrt{t}}.
$$

Slower than minimization problem!

GDA does not have last iterate guarantees

Consider following problem:

$$
\min_{x \in [-1,1]} \max_{y \in [-1,1]} xy
$$

- \bullet The optimal point is $(0, 0)$.
- GDA will diverge for unconstrained case or hit the boundary for constrained case.

[1] "SARAH: A novel method for machine learning problems using stochastic recursive gradient," L. Nguyen, J. Liu, K. Scheinberg, M. Takac, ICML 2017.

[2] "Stochastic variance reduction for nonconvex optimization," S. Reddi, A. Hefny, S. Sra, B. Poczos, A. Smola, ICML 2016.

[3] "Finite-Sum Smooth Optimization with SARAH," L. Nguyen, M. Dijk, D. Phan, P. Nguyen, T. Weng, J. Kalagnanam, Computational Optimization and Applications.

[4] "On the Convergence of Adam and Beyond.", S. Reddi, S. Kale, S. Kumar, ICLR 2018.