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Stochastic optimization

Stochastic optimization problem:

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)]︸ ︷︷ ︸
expectation setting

,

where the random variable ξ ∼ D.

Stochastic gradient descent:

xt+1 = xt − ηt∇f (xt , ξt).
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Stochastic variance reduced gradient (SVRG)

The finite-sum setting is a special case of the expectation setting:

F (x) =
1

n

n∑

i=1

fi (x).

Stochastic variance reduced gradient (SVRG):

∇fi (xt)−∇fi (x̃)︸ ︷︷ ︸
→0 if xt≈x̃

+ ∇F (x̃)︸ ︷︷ ︸
→0 if x̃≈x∗

where x̃ is a history point updated every O(κ) rounds.
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Iteration complexity

min
x∈Rd

F (x) =
1

n

n∑

i=1

fi (x).

iteration complexity per-iteration total

batch GD κ log(1/ϵ) n nκ log(1/ϵ)

SGD 1/ϵ 1 1/ϵ

SVRG log(1/ϵ) n + κ (n + κ) log(1/ϵ)

Table: Convergence rate for the strongly convex case
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Stochastic nonconvex optimization

Stochastic nonconvex optimization:

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)],

where f (x; ξ) is L-smooth and potentially nonconvex.

Our goal is to find a first-order stationary point x such that

E[∥∇F (x)∥2] ≤ ϵ.

Assumption:
Eξ[∥f (x, ξ)− F (x)∥22] ≤ σ2.
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SGD for nonconvex optimization

Stochastic gradient descent:

xt+1 = xt − ηt∇f (xt , ξt).

Return x̄ chosen uniformly at random from {x0, . . . , xt−1}.
If we choose

η = ηt =
1

L
min

{
ϵ2

2σ2
, 1

}
and t =

4(F (x0)− F (x∗))

ϵ2η
,

then
E[∥∇F (x̄)∥2] ≤ ϵ.

Lecture 13 OptML December 31st, 2024 6 / 25



Stochastic recursive gradient

Stochastic recursive gradient estimates:

gt = ∇fi (xt)−∇fi (xt−1) + gt−1

where i is randomly sampled from {1, . . . , n}.

comparison to SVRG (use a fixed snapshot point for the entire epoch)

∇fi (xt)−∇fi (x̃) +∇F (x̃)

Unlike SVRG, gt is NOT an unbiased estimator of ∇F (xt).

We have Et [gt −∇F (xt)] = gt−1 −∇F (xt−1).

If we average out all randomness, we have E[gt ] = E[∇F (xt)].
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StochAstic Recursive grAdient algoritHm (SARAH)

Algorithm 1 SARAH

1: Input: x0, η, m, S

2: x̃(0) = x0
3: for s = 0, . . . ,S − 1

4: g0 = ∇f (x̃(s))

5: x0 = x̃ = x̃(s)

6: for t = 0, . . . ,m − 1

7: draw it from {1, . . . , n} uniformly

8: xt+1 = xt − ηgt
9: gt+1 = ∇fit (xt+1)−∇fit (xt) + gt

10: end for

11: x̃(s+1) = xt for randomly chosen t ∈ {0, . . . ,m − 1}
12: end for

13: Output: x̃(S)
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Convergence rates for finite-sum setting

Method Complexity

GD nκ log(1/ϵ)

SGD 1/ϵ

SVRG (n + κ) log(1/ϵ)

SARAH [1] (n + κ) log(1/ϵ)

Table: Convergence rate for the strongly convex case

Method Complexity

GD n/ϵ

SGD 1/ϵ2

SVRG (n +
√
n/ϵ)

SARAH [1] (n + 1/ϵ) log(1/ϵ)

Table: Convergence rate for the smooth and convex case
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Convergence Rates for Finite-sum Setting

Method Complexity

GD n/ϵ2

SGD 1/ϵ4

SVRG [2] (n + n2/3/ϵ2)

SARAH [3] (n +
√
n/ϵ2)

Table: Convergence rate for the smooth and nonconvex case
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Momentum SGD

Momentum variant of SGD (Polyak, 1964):

pick a stochastic gradient gt

mt = βmt−1 + (1− β)gt (momentum term)

xt+1 = xt − ηtmt

is the stochastic variant of heavy-ball method

key element of deep learning optimizers
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Adagrad

Adagrad is an adaptive variant of SGD

pick a stochastic gradient gt

rt = rt−1 + gt ⊙ gt

xt+1 = xt −
ηt

δ +
√
rt

⊙ gt

chooses an adaptive, coordinate-wise learning rate

variants: Adadelta, Adam, RMSprop,...
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RMSprop

RMSprop is a moving average variant of AdaGrad

pick a stochastic gradient gt

rt = βrt−1 + (1− β)gt ⊙ gt

xt+1 = xt −
ηt

δ +
√
rt

⊙ gt

faster forgetting of older weights
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Adam

Adam is a momentum variant of RMSprop

pick a stochastic gradient gt

mt = β1mt−1 + (1− β1)gt (momentum term)

rt = β2rt−1 + (1− β2)gt ⊙ gt

xt+1 = xt −
ηt

δ +
√
rt

⊙mt

strong performance in practice, e.g. for self-attention networks

may not converge in some special cases, see [4]
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Minimax optimization

Minimax optimization:

min
x∈X

max
y∈Y

f (x, y)

Applications:

Adversarial learning

Generative Adversarial Network (GAN)

Two-player games
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Examples: adversarial learning

+ .007× =

“gibbon”“panda”
57.7% confidence 99.3 % confidence

We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained pertubation of

η = εsign (∇xJ(θ,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ε = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ε = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y ∈ {−1, 1} with P (y = 1) = σ
(
w>x+ b

)
where

σ(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y∼pdataζ(−y(w>x+ b))

where ζ(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

noise
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Examples: adversarial learning

In supervised learning, we consider

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(x; ai , bi ) + λR(x).

In adversarial training, we use a perturbed yi for each data ai .

It leads to the following minimax optimization problem

min
x∈Rd

max
yi∈Yi ,i=1,...,n

f̃ (x, y1, . . . , yn) ≜
1

n

n∑

i=1

l(x; yi , bi ) + λR(x),

where Yi = {y : ∥y − ai∥ ≤ δ} for some small δ > 0.
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Examples: generative adversarial network (GAN)

Given n data samples a1, . . . , an ∈ Rd from an unknown distribution, GAN
aims to generate additional samples with the same distribution as the
observed samples.

We formulate the minimax optimization problem

min
w∈W

max
θ∈Θ

1

n

n∑

i=1

logD(θ, ai ) + Ez∼N (0,I)

[
log(1− D(θ,G (w, z)))

]
.

1 D(θ, ·) is the discriminator that tries to separate the generated data
G (w; z) from the real data samples ai

2 G (w, ·) is the generator that tries to make D(θ, ·) cannot separate
the distributions of G (w; z) and ai
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Examples: two-player games

Consider the payoff matrix of rock-paper-scissor:

rock paper scissor
rock 0 1 −1
paper −1 0 1
scissor 1 −1 0

= A

The two-player rock-paper-scissor games aim to optimize:

min
x∈X

max
y∈Y

x⊤Ay

Pure strategy: X = Y = {e1, e2, e3}, not a convex set

Mixed strategy: X = Y = ∆, simplex over 3 dimension
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Properties of minimax optimization

In general, we have

max
y∈Y

min
x∈X

f (x, y) ≤ min
x∈X

max
y∈Y

f (x, y)

Von Neumann’s Minimax Theorem. If both X and Y are compact
convex sets, and f : X × Y → R is convex-concave, then

max
y∈Y

min
x∈X

f (x, y) = min
x∈X

max
y∈Y

f (x, y)
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Convex-concave optimization

We measure the optimality of (x̂, ŷ) in terms of the duality gap:

gap ≜ max
y∈Y

f (x̂, y)−min
x∈X

f (x, ŷ) ≥ 0

Review:

f is L-Lipschitz if |f (z1)− f (z2)| ≤ L ∥z1 − z2∥2.
f is ℓ-smooth if ∥∇f (z1)−∇f (z2)∥2 ≤ ℓ ∥z1 − z2∥2.
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Gradient descent ascent (GDA)

Projected gradient descent ascent:

x̃t+1 = xt − η∇xf (xt , yt)

ỹt+1 = yt + η∇yf (xt , yt)

xt+1 = PX (x̃t+1)

yt+1 = PY(ỹt+1)
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Convergence rates of GDA

If f is L-Lipschitz and convex-concave, let the diameter of X and Y be R.
Then for fixed t with learning rate η = R

L
√
t
, we have

max
y∈Y

f

(
1

t

t∑

k=1

xk , y

)
−min

x∈X
f

(
x,

1

t

t∑

k=1

yk

)
≤ 2LR√

t
.

If f is ℓ-smooth and convex-concave, let the diameter of X and Y be R.
Then for fixed t with η = R

L
√
t
where L = 2ℓR + ∥∇f (x0, y0)∥2, we have

max
y∈Y

f

(
1

t

t∑

k=1

xk , y

)
−min

x∈X
f

(
x,

1

t

t∑

k=1

yk

)
≤ 2LR√

t
.

Slower than minimization problem!
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GDA does not have last iterate guarantees

Consider following problem:

min
x∈[−1,1]

max
y∈[−1,1]

xy

The optimal point is (0, 0).

GDA will diverge for unconstrained case or hit the boundary for
constrained case.
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