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Review

Stochastic optimization problem:

)

min F(x) =  E¢[f(x;&)]
xeRY —_———
expectation setting

where the random variable £ ~ D.

The finite-sum setting is a special case of the expectation setting:

F(x) = Zf
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Clear up

Stochastic gradient descent:

Xe41 = Xt — n:&(xe, &) (expectation setting)
Suppose we return a weighted average
d n
~ k
Xe= D F
=0 2=j=0l
If F is convex, we have

. oy lIxo = X113+ Yop o 022
E[F(%¢) — F(x")] < 2=k
2Zk:o77k
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Review

Stochastic gradient descent:

Xt+1 = X¢ — Nt Vi, (x¢)  (finite-sum setting)

For fixed step size, SGD achieves

* 12 t *1(12 770-2
E [lhee 1] < (1 =20 Ixo — X3+ 5 -

How to reduce the variance of the gradient estimator?
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Stochastic variance reduced gradient (SVRG)

NOTE: For some v; with E[v;] =0, g = Vf;,(x¢) — v; is still an unbiased
estimator of V F(x¢).

If we have access to a history point X and VF(X), how to build a unbiased
gradient estimator with converges to 07

Vii(x;) = V(%) + VF(X)

—0 if xgrX —0 if x~x*

where i is randomly sampled from {1,..., n}.

@ an unbiased estimator of VF(x;)

@ converges to 0 if x; =~ X ~ x*
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Stochastic variance reduced gradient (SVRG)

@ operate in epochs
@ in the s-th epoch

o beginning: take a snapshot X of the current iterate, and compute the
batch gradient

VF(X) = % > V).
i=1

e inner loop: use the snapshot point to help reduce variance

xer1 = Xt — Ne(VHi(xe) — VA(X) + VF(X)),
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Stochastic variance reduced gradient (SVRG)

Algorithm 1 Stochastic Variance Reduced Gradient
1: Input: xo, 7, m, S

2: )?(0) = Xp

3: fors=0,...,5-1

4 Xg = i(s)

5 fort=0,...,m—1

6: draw i from {1,..., n} uniformly at random

7 xepr = xe — (Vi (xe) — V(EE)) + VF(RE))),

8: end for

9:  Option I: X6t = x,,

10:  Option II: X511 = x, for randomly chosen t € {0,...,m—1}
11: end for

12: Output: (5
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Remark

@ constant stepsize n
@ each epoch contains 2m + n gradient computations

@ the average per-iteration cost of SVRG is comparable to that of SGD
if m2>n
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Convergence analysis

Suppose F(x) is L-smooth and pu-strongly convex. Let n = ©(1/L) and
m = ©(k) is sufficient large so that

= ! 2ty
P=m@ —2lym " 1-2Lp -

then SVRG holds that

E[F(&9) — F(x*)] < p*(F(x0) — F(x")).
To achieve
E[FEO) - F(x)] <

we only require at most O((n + ) log(1/€)) number of gradient
computations.

OptML F——

9/18



Convergence analysis

Important Lemma:

2

2] <4l [F(X§S)) — F(x") + F(x¥) - F(x*)}

OptML e 2 A



Summary

min F(x)
xeRd

Zf

iteration complexity | per-iteration total
batch GD K log(1/e€) n nk log(1/€)
SGD 1/e 1 1/e
SVRG log(1/€) n+k (n+ k) log(1/e)

Table: Convergence rate for the strongly convex case
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Nonconvex problems

Many objective functions in machine learning are nonconvex:
@ low-rank matrix completion
mixture models

°
@ learning deep neural nets
°
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Challenges

@ there may be local minima everywhere

@ no algorithm can solve nonconvex problems efficiently in all cases
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Typical convergence guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

@ convergence to stationary points ,i.e., Vf(x) =0
@ convergence to local minima

@ local convergence to global minima i.e., when initialized suitably
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Making gradients small

Suppose we aim to find a stationary point, which means that our goal is
merely to find a point x with

|VF(x)||, < € (called e-approximate stationary point)

e-approximate stationary point does not imply local minima for nonconvex
optimization.
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Making gradients small

Let f be L-smooth and n; =n = % then GD obeys

. 2L(f(x0) — f(x*))
Jmin [[VF(x)ll, < \/ > -

e GD finds an e-approximate stationary point in O(1/€?) iterations.

@ does not imply GD converges to stationary points; it only says that
there exists an approximate stationary point in the GD trajectory
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Stochastic nonconvex optimization

Stochastic nonconvex optimization:

min F(x) = E[f(x; €)1,

where f(x; ) is L-smooth and potentially nonconvex.

Our goal is to find a first-order stationary point x such that

E[[VF(x)ll] < e

Assumption:
Ee[l|f (x,€) = F(x)Il3] < o>,
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SGD for nonconvex optimization

Stochastic gradient descent:

Xt41 = Xt — ntvf(xta ft)

@ Return X chosen uniformly at random from {xq,...,x;—1}.

o If we choose

N =" = — min

[ {62 1} and t — 4(F(xo) — F(x*))

202’ €2n ’

then
E[[VF®),] < e
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