Optimization for Machine Learning 机器学习中的优化方法

^陈 程

^华东师范大^学 ^软件工程学^院

chchen@sei.ecnu.edu.cn

Outline

[Stochastic variance reduced gradient](#page-5-0)

[Nonconvex optimization](#page-13-0)

[Stochastic nonconvex optimization](#page-19-0)

Review

Stochastic optimization problem:

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \underbrace{\mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]}_{\text{expectation setting}},
$$

where the random variable $\xi \sim \mathcal{D}$.

The finite-sum setting is a special case of the expectation setting:

$$
F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).
$$

Clear up

Stochastic gradient descent:

 $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{g}(\mathbf{x}_t, \xi)$ (expectation setting)

Suppose we return a weighted average

$$
\tilde{\mathbf{x}}_t = \sum_{k=0}^t \frac{\eta_k}{\sum_{j=0}^t \eta_j} \mathbf{x}_k
$$

If F is convex, we have

$$
\mathbb{E}[\mathcal{F}(\tilde{\mathbf{x}}_t) - \mathcal{F}(\mathbf{x}^*)] \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sum_{k=0}^t \sigma^2 \eta_k^2}{2 \sum_{k=0}^t \eta_k}.
$$

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_{i_t}(\mathbf{x}_t) \quad \text{(finite-sum setting)}
$$

For fixed step size, SGD achieves

$$
\mathbb{E}\left[\left\Vert \mathbf{x}_t - \mathbf{x}^* \right\Vert_2^2\right] \leq \left(1 - 2\eta\mu\right)^t \left\Vert \mathbf{x}_0 - \mathbf{x}^* \right\Vert_2^2 + \frac{\eta\sigma^2}{2\mu}.
$$

How to reduce the variance of the gradient estimator?

Outline

[Stochastic variance reduced gradient](#page-5-0)

Stochastic variance reduced gradient (SVRG)

NOTE: For some \mathbf{v}_t with $\mathbb{E}[\mathbf{v}_t]=0$, $\mathbf{g}_t=\nabla f_{i_t}(\mathbf{x}_t)-\mathbf{v}_t$ is still an unbiased estimator of $\nabla F(\mathbf{x}_t)$.

If we have access to a history point $\tilde{\mathbf{x}}$ and $\nabla F(\tilde{\mathbf{x}})$, how to build a unbiased gradient estimator with converges to 0?

$$
\frac{\nabla f_i(\mathbf{x}_t) - \nabla f_i(\tilde{\mathbf{x}})}{\rightarrow 0 \text{ if } \mathbf{x}_t \approx \tilde{\mathbf{x}}} + \frac{\nabla F(\tilde{\mathbf{x}})}{\rightarrow 0 \text{ if } \tilde{\mathbf{x}} \approx \mathbf{x}^*}
$$

where *i* is randomly sampled from $\{1, \ldots, n\}$.

- an unbiased estimator of $\nabla F(\mathbf{x}_t)$
- converges to $\mathbf{0}$ if $\mathbf{x}_t \approx \tilde{\mathbf{x}} \approx \mathbf{x}^*$

Stochastic variance reduced gradient (SVRG)

- o operate in epochs
- \bullet in the s-th epoch
	- \bullet beginning: take a snapshot \tilde{x} of the current iterate, and compute the batch gradient

$$
\nabla F(\tilde{\mathbf{x}}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\mathbf{x}}).
$$

• inner loop: use the snapshot point to help reduce variance

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t (\nabla f_i(\mathbf{x}_t) - \nabla f_i(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})),
$$

Stochastic variance reduced gradient (SVRG)

- **•** constant stepsize η
- each epoch contains $2m + n$ gradient computations
- the average per-iteration cost of SVRG is comparable to that of SGD if $m \geq n$

Convergence analysis

Suppose $F(\mathbf{x})$ is *L*-smooth and μ -strongly convex. Let $\eta = \Theta(1/L)$ and $m = \Theta(\kappa)$ is sufficient large so that

$$
\rho=\frac{1}{\mu\eta(1-2L\eta)m}+\frac{2L\eta}{1-2L\eta}<1,
$$

then SVRG holds that

$$
\mathbb{E}\big[F(\tilde{\mathbf{x}}^{(s)}) - F(\mathbf{x}^*)\big] \leq \rho^s(F(\mathbf{x}_0) - F(\mathbf{x}^*))
$$

To achieve

$$
\mathbb{E}\big[F(\tilde{\mathbf{x}}^{(s)}) - F(\mathbf{x}^*)\big] \leq \epsilon
$$

we only require at most $\mathcal{O}((n+\kappa) \log(1/\epsilon))$ number of gradient computations.

Important Lemma:

$$
\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}^{(s)}\right\|_{2}^{2}\right] \leq 4L\left[F(\mathbf{x}_{t}^{(s)})-F(\mathbf{x}^{*})+F(\tilde{\mathbf{x}}^{(s)})-F(\mathbf{x}^{*})\right]
$$

Summary

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})=\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x}).
$$

Table: Convergence rate for the strongly convex case

Outline

[Stochastic variance reduced gradient](#page-5-0)

Many objective functions in machine learning are nonconvex:

- **o** low-rank matrix completion
- **•** mixture models
- o learning deep neural nets

 \bullet ...

Challenges

- there may be local minima everywhere
- no algorithm can solve nonconvex problems efficiently in all cases

We cannot hope for efficient global convergence to global minima in general, but we may have

- convergence to stationary points ,i.e., $\nabla f(\mathbf{x}) = 0$
- convergence to local minima
- **•** local convergence to global minima i.e., when initialized suitably

Suppose we aim to find a stationary point, which means that our goal is merely to find a point x with

 $\|\nabla f(\mathbf{x})\|_{2} \leq \epsilon$ (called ϵ -approximate stationary point)

 ϵ -approximate stationary point does not imply local minima for nonconvex optimization.

Making gradients small

Let f be *L*-smooth and $\eta_t = \eta = \frac{1}{L}$ $\frac{1}{L}$, then GD obeys

$$
\min_{0\leq k
$$

- GD finds an ϵ -approximate stationary point in $O(1/\epsilon^2)$ iterations.
- o does not imply GD converges to stationary points; it only says that there exists an approximate stationary point in the GD trajectory

Outline

[Stochastic variance reduced gradient](#page-5-0)

4 [Stochastic nonconvex optimization](#page-19-0)

Stochastic nonconvex optimization

Stochastic nonconvex optimization:

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})\triangleq \mathbb{E}_{\xi}[f(\mathbf{x};\xi)],
$$

where $f(\mathbf{x}; \xi)$ is L-smooth and potentially nonconvex.

Our goal is to find a first-order stationary point x such that

 $\mathbb{E}[\|\nabla F(\mathbf{x})\|_2] \leq \epsilon.$

Assumption:

$$
\mathbb{E}_{\xi}[\|f(\mathbf{x},\xi)-F(\mathbf{x})\|_2^2] \leq \sigma^2.
$$

SGD for nonconvex optimization

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t, \xi_t).
$$

- Return \bar{x} chosen uniformly at random from $\{x_0, \ldots, x_{t-1}\}.$
- **If** we choose

$$
\eta = \eta_t = \frac{1}{L} \min \left\{ \frac{\epsilon^2}{2\sigma^2}, 1 \right\} \text{ and } t = \frac{4(F(\mathbf{x}_0) - F(\mathbf{x}^*))}{\epsilon^2 \eta},
$$

then

 $\mathbb{E}[\|\nabla F(\bar{\mathbf{x}})\|_2] \leq \epsilon.$