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Review

Stochastic optimization problem:

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)]︸ ︷︷ ︸
expectation setting

,

where the random variable ξ ∼ D.

The finite-sum setting is a special case of the expectation setting:

F (x) =
1

n

n∑
i=1

fi (x).
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Clear up

Stochastic gradient descent:

xt+1 = xt − ηtg(xt , ξ) (expectation setting)

Suppose we return a weighted average

x̃t =
t∑

k=0

ηk∑t
j=0 ηj

xk

If F is convex, we have

E[F (x̃t)− F (x∗)] ≤
∥x0 − x∗∥22 +

∑t
k=0 σ

2η2k
2
∑t

k=0 ηk
.
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Review

Stochastic gradient descent:

xt+1 = xt − ηt∇fit (xt) (finite-sum setting)

For fixed step size, SGD achieves

E
[
∥xt − x∗∥22

]
≤ (1− 2ηµ)t ∥x0 − x∗∥22 +

ησ2

2µ
.

How to reduce the variance of the gradient estimator?
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Stochastic variance reduced gradient (SVRG)

NOTE: For some vt with E[vt ] = 0, gt = ∇fit (xt)− vt is still an unbiased
estimator of ∇F (xt).

If we have access to a history point x̃ and ∇F (x̃), how to build a unbiased
gradient estimator with converges to 0?

∇fi (xt)−∇fi (x̃)︸ ︷︷ ︸
→0 if xt≈x̃

+ ∇F (x̃)︸ ︷︷ ︸
→0 if x̃≈x∗

where i is randomly sampled from {1, . . . , n}.

an unbiased estimator of ∇F (xt)

converges to 0 if xt ≈ x̃ ≈ x∗
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Stochastic variance reduced gradient (SVRG)

operate in epochs

in the s-th epoch

beginning: take a snapshot x̃ of the current iterate, and compute the
batch gradient

∇F (x̃) =
1

n

n∑
i=1

∇fi (x̃).

inner loop: use the snapshot point to help reduce variance

xt+1 = xt − ηt(∇fi (xt)−∇fi (x̃) +∇F (x̃)),
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Stochastic variance reduced gradient (SVRG)

Algorithm 1 Stochastic Variance Reduced Gradient

1: Input: x0, η, m, S

2: x̃(0) = x0
3: for s = 0, . . . ,S − 1

4: x0 = x̃(s)

5: for t = 0, . . . ,m − 1

6: draw it from {1, . . . , n} uniformly at random

7: xt+1 = xt − η(∇fit (xt)−∇fit (x̃
(s)) +∇F (x̃(s))),

8: end for

9: Option I: x̃(s+1) = xm
10: Option II: x̃(s+1) = xt for randomly chosen t ∈ {0, . . . ,m − 1}
11: end for

12: Output: x̃(S)
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Remark

constant stepsize η

each epoch contains 2m + n gradient computations

the average per-iteration cost of SVRG is comparable to that of SGD
if m ≳ n
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Convergence analysis

Suppose F (x) is L-smooth and µ-strongly convex. Let η = Θ(1/L) and
m = Θ(κ) is sufficient large so that

ρ =
1

µη(1− 2Lη)m
+

2Lη

1− 2Lη
< 1,

then SVRG holds that

E
[
F (x̃(s))− F (x∗)

]
≤ ρs(F (x0)− F (x∗)).

To achieve

E
[
F (x̃(s))− F (x∗)

]
≤ ϵ

we only require at most O((n + κ) log(1/ϵ)) number of gradient
computations.
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Convergence analysis

Important Lemma:

Et

[∥∥∥g(s)t

∥∥∥2
2

]
≤ 4L

[
F (x

(s)
t )− F (x∗) + F (x̃(s))− F (x∗)

]
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Summary

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi (x).

iteration complexity per-iteration total

batch GD κ log(1/ϵ) n nκ log(1/ϵ)

SGD 1/ϵ 1 1/ϵ

SVRG log(1/ϵ) n + κ (n + κ) log(1/ϵ)

Table: Convergence rate for the strongly convex case
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Nonconvex problems

Many objective functions in machine learning are nonconvex:

low-rank matrix completion

mixture models

learning deep neural nets

...
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Challenges

there may be local minima everywhere

no algorithm can solve nonconvex problems efficiently in all cases
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Typical convergence guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

convergence to stationary points ,i.e., ∇f (x) = 0

convergence to local minima

local convergence to global minima i.e., when initialized suitably
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Making gradients small

Suppose we aim to find a stationary point, which means that our goal is
merely to find a point x with

∥∇f (x)∥2 ≤ ϵ (called ϵ-approximate stationary point)

ϵ-approximate stationary point does not imply local minima for nonconvex
optimization.
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Making gradients small

Let f be L-smooth and ηt = η = 1
L , then GD obeys

min
0≤k<t

∥∇f (xt)∥2 ≤
√

2L(f (x0)− f (x∗))

t
.

GD finds an ϵ-approximate stationary point in O(1/ϵ2) iterations.

does not imply GD converges to stationary points; it only says that
there exists an approximate stationary point in the GD trajectory
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Stochastic nonconvex optimization

Stochastic nonconvex optimization:

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)],

where f (x; ξ) is L-smooth and potentially nonconvex.

Our goal is to find a first-order stationary point x such that

E[∥∇F (x)∥2] ≤ ϵ.

Assumption:
Eξ[∥f (x, ξ)− F (x)∥22] ≤ σ2.
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SGD for nonconvex optimization

Stochastic gradient descent:

xt+1 = xt − ηt∇f (xt , ξt).

Return x̄ chosen uniformly at random from {x0, . . . , xt−1}.
If we choose

η = ηt =
1

L
min

{
ϵ2

2σ2
, 1

}
and t =

4(F (x0)− F (x∗))

ϵ2η
,

then
E[∥∇F (x̄)∥2] ≤ ϵ.
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