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Empirical risk minimization

Let {aj, bj}"_; be n random samples. In machine learning, we usually learn
model parameters x by optimizing

min F(x Zf ;{aj, bi}).

xeRd
@ hinge loss (support vector machine):
f(x;{a;, b;}) = max{1 — b;a, x,0}
o logistic loss (logistic regression):
f(x; {a;, bi}) = log(1 + exp(—b;a; x))

@ neural network
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Stochastic optimization

More generally, we consider the stochastic optimization problem

min F(x) = Ee[f(x; )]
xeRd —_——
expectation setting

where the random variable £ ~ D.

@ £ is the randomness in problem.

@ In this lecture, we suppose F(x) is differentiable and convex.
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Finite-sum setting

The finite-sum setting is a special case of the expectation setting:
1 n
A = 5 300,
=

If one draws index i from {1,2,..., n} uniformly at random, then

F(x) = Eilfi(x)]-
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A natural solution

Under “mild” assumptions, we have

Xty1 = X¢ — ntvF(Xt)
= xt — Nt VE[f(X¢, §)]
= X — ntE[va(xt) f)]

issues:

@ For the expectation setting, distribution of & may be unknown.
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A natural solution

Under “mild” assumptions, we have

Xty1 = X¢ — ntvF(Xt)
= xt — Nt VE[f(X¢, §)]
= X; — ntE[fo(Xt, f)]

issues:
@ For the expectation setting, distribution of & may be unknown.

@ For the finite-sum setting, computing full gradient is very expensive
when n is very large.
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© Stochastic gradient descent
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Stochastic gradient descent (SGD)

Stochastic gradient descent:

Xt4+1 = Xt — th(xtaf)7

where g(x¢, &) is an unbiased estimator of VF(x;), i.e.,

Elg(xt, &)l = VF(x:).
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Stochastic gradient descent (SGD)

Stochastic gradient descent:
Xt+1 = X — Neg(Xt, §),
where g(x¢, &) is an unbiased estimator of VF(x;), i.e.,

Elg(xt, &)l = VF(x:).

For the finite-sum setting, we can choose index i from {1,2,...,n}
uniformly at random. Then Vf;,(x;) is an unbiased estimator of V F(x;):

Xt4+1 = Xt — ntvﬁt(xt)
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© Convergence analysis
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Strongly convex and smooth problems

min F(x) £ Ee[f(x; )]

Assumptions:

e F(x) is L-smooth and p-strongly convex (we do not require
assumptions on f(x;§));
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Strongly convex and smooth problems

min F(x) £ Ee[f(x; )]

Assumptions:

e F(x) is L-smooth and p-strongly convex (we do not require
assumptions on f(x;§));

e Given &, ..., &1, g(x¢, &) is an unbiased estimator of VF(x;), i.e.,

E [g(xhgt)‘g()v s 751“71] = VF(Xt“);
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Strongly convex and smooth problems

min F(x) £ Ee[f(x; )]

Assumptions:

e F(x) is L-smooth and p-strongly convex (we do not require
assumptions on f(x;§));

e Given &, ..., &1, g(x¢, &) is an unbiased estimator of VF(x;), i.e.,
E [g(xhgt)‘g()v s 751“71] = VF(Xt“);

e For all x, we have E [||g(x,£)||§] <o

-~

bounded variance
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Convergence with fixed stepsizes

Under the assumptions in page 7, if n, =n < 1/(2L), then SGD achieves

no?

*12 *2
E [lhee = 1B] < (1= 20 Ixo — X3+ 7
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Convergence with fixed stepsizes

Under the assumptions in page 7, if n, =n < 1/(2L), then SGD achieves

no?

*12 *2
E [lhee = 1B] < (1= 20 Ixo — X3+ 7

o fast (linear) convergence at the very beginning
@ converges to some neighborhood of x*

@ smaller stepsize 7 yield better converging points
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One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, half the stepsize
and continue SGD.
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Convergence with diminishing stepsizes

Under the assumptions in page 7, if n; = t_%l for some 6 > i then SGD
achieves a
IE[ —x* 2} < -2
||Xt X HZ — t+1

where ag = max{IIXo - XH% ) 223;321}-
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Convex and smooth problems

min F(x) = Ee[f(x; )]
xeRd
Assumptions:
@ F is L-smooth and convex;
e Given &, ..., &1, g(x¢, &) is an unbiased estimator of VF(x;);
e For all x, we have JE[Hg(x,g)HS] <o

bounded variance

OptML e LR B Y



Convex and smooth problems

Suppose we return a weighted average

t

. Nk
Xt = X
Z Z}:o nj

k=0

If F is convex, we have

%12
EF (%) - F(c)] < X0 X2 Skco ok
B 2Z/t<:o Nk

If we choose 7; = ©(1/+/t), we can get

E[F(X:) — F(x*)] < O (’XO - X*H\g/;— o2 log t) |
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Convex and smooth problems

If we return

kXK

t -
k=11 Zj:[%] nj

it:

Then we have

Ixo — x*[3 + b 0% R 4o
E[F (%) - F(x*)] < Y i s PR

22/2:(%1 Nk
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Comparisons with batch GD

, 1
min F(x) = 2> fi(x).

i=1
iteration complexity | per-iteration total
batch GD k log(1/€) n nk log(1/e)
SGD 1/e 1 1/e

Table: Convergence rate for the strongly convex case

iteration complexity | per-iteration | total
batch GD 1/e n n/e
SGD 1/e? 1 1/e?

Table: Convergence rate for the convex case
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