Optimization for Machine Learning 机器学习中的优化方法

^陈 程

^华东师范大^学 ^软件工程学^院

chchen@sei.ecnu.edu.cn

 \triangleright \rightarrow \exists \rightarrow

Outline

[Stochastic gradient descent](#page-7-0)

 299

造

イロト イ部 トイモ トイモト

Empirical risk minimization

Let $\{{\boldsymbol{a}}_i,b_i\}_{i=1}^n$ be n random samples. In machine learning, we usually learn model parameters x by optimizing

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})\triangleq\frac{1}{n}\sum_{i=1}^n f(\mathbf{x};\{\mathbf{a}_i,b_i\}).
$$

• hinge loss (support vector machine):

$$
f(\mathbf{x}; \{\mathbf{a}_i, b_i\}) = \max\{1 - b_i \mathbf{a}_i^{\top} \mathbf{x}, 0\}
$$

• logistic loss (logistic regression):

$$
f(\mathbf{x}; \{a_i, b_i\}) = \log(1 + \exp(-b_i a_i^{\top} \mathbf{x}))
$$

neural network

More generally, we consider the stochastic optimization problem

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \underbrace{\mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]}_{\text{expectation setting}},
$$

where the random variable $\xi \sim \mathcal{D}$.

- \bullet ξ is the randomness in problem.
- In this lecture, we suppose $F(x)$ is differentiable and convex.

 Ω

K ロ ト K 御 ト K 君 ト K 君 ト 一君

The finite-sum setting is a special case of the expectation setting:

$$
F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).
$$

If one draws index *i* from $\{1, 2, \ldots, n\}$ uniformly at random, then

 $F(\mathbf{x}) = \mathbb{E}_i[f_i(\mathbf{x})].$

 Ω

A natural solution

Under "mild" assumptions, we have

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla F(\mathbf{x}_t)
$$

= $\mathbf{x}_t - \eta_t \nabla \mathbb{E}[f(\mathbf{x}_t, \xi)]$
= $\mathbf{x}_t - \eta_t \mathbb{E}[\nabla_{\mathbf{x}} f(\mathbf{x}_t, \xi)]$

issues:

- For the expectation setting, distribution of ξ may be unknown.
- For the finite-sum setting, computing full gradient is very expensive when n is very large.

A natural solution

Under "mild" assumptions, we have

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla F(\mathbf{x}_t)
$$

= $\mathbf{x}_t - \eta_t \nabla \mathbb{E}[f(\mathbf{x}_t, \xi)]$
= $\mathbf{x}_t - \eta_t \mathbb{E}[\nabla_{\mathbf{x}} f(\mathbf{x}_t, \xi)]$

issues:

- For the expectation setting, distribution of ξ may be unknown.
- For the finite-sum setting, computing full gradient is very expensive when n is very large.

Outline

2 [Stochastic gradient descent](#page-7-0)

重

 299

イロト イ部 トイヨ トイヨト

Stochastic gradient descent (SGD)

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t g(\mathbf{x}_t, \xi),
$$

where $g(\mathbf{x}_t, \xi)$ is an unbiased estimator of $\nabla F(\mathbf{x}_t)$, i.e.,

$$
\mathbb{E}[g(\mathbf{x}_t,\xi)]=\nabla F(\mathbf{x}_t).
$$

For the finite-sum setting, we can choose index i_t from $\{1, 2, \ldots, n\}$ uniformly at random. Then $\nabla f_{l_t}(\mathbf{x}_t)$ is an unbiased estimator of $\nabla F(\mathbf{x}_t)$:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_{i_t}(\mathbf{x}_t)
$$

Stochastic gradient descent (SGD)

Stochastic gradient descent:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t g(\mathbf{x}_t, \xi),
$$

where $g(\mathbf{x}_t, \xi)$ is an unbiased estimator of $\nabla F(\mathbf{x}_t)$, i.e.,

$$
\mathbb{E}[g(\mathbf{x}_t,\xi)]=\nabla F(\mathbf{x}_t).
$$

For the finite-sum setting, we can choose index i_t from $\{1, 2, \ldots, n\}$ uniformly at random. Then $\nabla f_{i_t}(\mathbf{x}_t)$ is an unbiased estimator of $\nabla F(\mathbf{x}_t)$:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_{i_t}(\mathbf{x}_t)
$$

Outline

[Stochastic optimization](#page-1-0)

重

 299

イロト イ部 トイヨ トイヨト

Strongly convex and smooth problems

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]
$$

Assumptions:

 \bullet F(x) is L-smooth and μ -strongly convex (we do not require assumptions on $f(\mathbf{x}; \xi)$);

Given $\xi_0,\ldots,\xi_{t-1},\ g(\mathsf{x}_t,\xi_t)$ is an unbiased estimator of $\nabla F(\mathsf{x}_t),$ i.e.,

$$
\mathbb{E}\left[g(\mathbf{x}_t,\xi_t)\big|\xi_0,\ldots,\xi_{t-1}\right]=\nabla F(\mathbf{x}_t);
$$

For all **x**, we have $\mathbb{E}\left[\left\|g(\mathbf{x},\xi)\right\|_2^2\right]$ $\left[\frac{2}{2}\right] \leq \sigma^2$. bounded variance

Strongly convex and smooth problems

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]
$$

Assumptions:

- \bullet F(x) is L-smooth and μ -strongly convex (we do not require assumptions on $f(\mathbf{x}; \xi)$);
- Given $\xi_0,\ldots,\xi_{t-1},\ g(\mathbf x_{t},\xi_{t})$ is an unbiased estimator of $\nabla F(\mathbf x_{t}),$ i.e.,

$$
\mathbb{E}\left[g(\mathbf{x}_t,\xi_t)\big|\xi_0,\ldots,\xi_{t-1}\right]=\nabla F(\mathbf{x}_t);
$$

• For all x, we have
$$
\underbrace{\mathbb{E}\left[\|g(\mathbf{x},\xi)\|_2^2\right]}_{\text{bounded variance}} \leq \sigma^2.
$$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Strongly convex and smooth problems

$$
\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]
$$

Assumptions:

 \bullet F(x) is L-smooth and μ -strongly convex (we do not require assumptions on $f(\mathbf{x}; \xi)$);

Given $\xi_0,\ldots,\xi_{t-1},\ g(\mathbf x_{t},\xi_{t})$ is an unbiased estimator of $\nabla F(\mathbf x_{t}),$ i.e.,

$$
\mathbb{E}\left[g(\mathbf{x}_t,\xi_t)\big|\xi_0,\ldots,\xi_{t-1}\right]=\nabla F(\mathbf{x}_t);
$$

For all **x**, we have $\mathbb{E}\left[\|g(\mathbf{x},\xi)\|_2^2\right]$ $\left[\frac{2}{2}\right] \leq \sigma^2.$ bounded variance

Convergence with fixed stepsizes

Under the assumptions in page [7,](#page-11-0) if $\eta_t = \eta \leq 1/(2L)$, then SGD achieves

$$
\mathbb{E}\left[\left\Vert \mathbf{x}_{t}-\mathbf{x}^{*}\right\Vert _{2}^{2}\right]\leq\left(1-2\eta\mu\right)^{t}\left\Vert \mathbf{x}_{0}-\mathbf{x}^{*}\right\Vert _{2}^{2}+\frac{\eta\sigma^{2}}{2\mu};
$$

- fast (linear) convergence at the very beginning
- converges to some neighborhood of x^*
- smaller stepsize η yield better converging points

 Ω

イロト イ押 トイヨ トイヨ トー ヨ

Convergence with fixed stepsizes

Under the assumptions in page [7,](#page-11-0) if $\eta_t = \eta \leq 1/(2L)$, then SGD achieves

$$
\mathbb{E}\left[\left\Vert \mathbf{x}_{t}-\mathbf{x}^*\right\Vert_2^2\right] \leq \left(1-2\eta\mu\right)^{t} \left\Vert \mathbf{x}_0-\mathbf{x}^*\right\Vert_2^2 + \frac{\eta\sigma^2}{2\mu};
$$

- fast (linear) convergence at the very beginning
- converges to some neighborhood of x^*
- **•** smaller stepsize η yield better converging points

One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, half the stepsize and continue SGD.

 Ω

Þ

Convergence with diminishing stepsizes

Under the assumptions in page [7,](#page-11-0) if $\eta_t = \frac{\theta}{t+1}$ for some $\theta > \frac{1}{2\mu}$, then SGD achieves

$$
\mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^*\|_2^2\right] \le \frac{\alpha_\theta}{t+1}
$$
\nwhere $\alpha_\theta = \max\left\{\|\mathbf{x}_0 - \mathbf{x}\|_2^2, \frac{2\theta^2 \sigma^2}{2\mu\theta - 1}\right\}.$

Convex and smooth problems

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})\triangleq \mathbb{E}_{\xi}[f(\mathbf{x};\xi)]
$$

Assumptions:

- \bullet F is *L*-smooth and convex:
- Given ξ_0,\ldots,ξ_{t-1} , $g(\mathbf{x}_t,\xi_t)$ is an unbiased estimator of $\nabla F(\mathbf{x}_t);$
- For all **x**, we have $\mathbb{E}[\Vert g(\mathbf{x}, \xi) \Vert_2^2]$ $\left[\frac{2}{2}\right] \leq \sigma^2$. bounded variance

세종 베이 동

Convex and smooth problems

Suppose we return a weighted average

$$
\tilde{\mathbf{x}}_t = \sum_{k=0}^t \frac{\eta_k}{\sum_{j=0}^t \eta_j} \mathbf{x}_k
$$

If F is convex, we have

$$
\mathbb{E}[\mathcal{F}(\tilde{\mathbf{x}}_t) - \mathcal{F}(\mathbf{x}^*)] \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sum_{k=0}^t \sigma^2 \eta_k^2}{2 \sum_{k=0}^t \eta_k}.
$$

If we choose $\eta_t = \Theta(1/2)$ √ (t) , we can get

$$
\mathbb{E}[F(\tilde{\mathbf{x}}_t) - F(\mathbf{x}^*)] \leq O\left(\frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sigma^2 \log t}{\sqrt{t}}\right)
$$

 $\leftarrow \equiv +$

E

 QQ

.

Convex and smooth problems

If we return

$$
\tilde{\mathbf{x}}_t = \sum_{k=\lceil \frac{t}{2} \rceil}^t \frac{\eta_k \mathbf{x}_k}{\sum_{j=\lceil \frac{t}{2} \rceil}^t \eta_j}
$$

Then we have

$$
\mathbb{E}[\mathcal{F}(\tilde{\mathbf{x}}_t) - \mathcal{F}(\mathbf{x}^*)] \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sum_{k=\lceil \frac{t}{2} \rceil}^t \sigma^2 \eta_k^2}{2 \sum_{k=\lceil \frac{t}{2} \rceil}^t \eta_k} = O\left(\frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sigma^2}{\sqrt{t}}\right)
$$

Þ

← ロ → → ← 何 →

重

.

Comparisons with batch GD

$$
\min_{\mathbf{x}\in\mathbb{R}^d}F(\mathbf{x})=\frac{1}{n}\sum_{i=1}^nf_i(\mathbf{x}).
$$

Table: Convergence rate for the strongly convex case

Table: Convergence rate for the convex case

 QQ

E