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Empirical risk minimization

Let {ai , bi}ni=1 be n random samples. In machine learning, we usually learn
model parameters x by optimizing

min
x∈Rd

F (x) ≜
1

n

n∑
i=1

f (x; {ai , bi}).

hinge loss (support vector machine):

f (x; {ai , bi}) = max{1− bia
⊤
i x, 0}

logistic loss (logistic regression):

f (x; {ai , bi}) = log(1 + exp(−bia
⊤
i x))

neural network
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Stochastic optimization

More generally, we consider the stochastic optimization problem

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)]︸ ︷︷ ︸
expectation setting

,

where the random variable ξ ∼ D.

ξ is the randomness in problem.

In this lecture, we suppose F (x) is differentiable and convex.
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Finite-sum setting

The finite-sum setting is a special case of the expectation setting:

F (x) =
1

n

n∑
i=1

fi (x).

If one draws index i from {1, 2, . . . , n} uniformly at random, then

F (x) = Ei [fi (x)].
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A natural solution

Under “mild” assumptions, we have

xt+1 = xt − ηt∇F (xt)

= xt − ηt∇E[f (xt , ξ)]
= xt − ηtE[∇xf (xt , ξ)]

issues:

For the expectation setting, distribution of ξ may be unknown.

For the finite-sum setting, computing full gradient is very expensive
when n is very large.
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Stochastic gradient descent (SGD)

Stochastic gradient descent:

xt+1 = xt − ηtg(xt , ξ),

where g(xt , ξ) is an unbiased estimator of ∇F (xt), i.e.,

E[g(xt , ξ)] = ∇F (xt).

For the finite-sum setting, we can choose index it from {1, 2, . . . , n}
uniformly at random. Then ∇fit (xt) is an unbiased estimator of ∇F (xt):

xt+1 = xt − ηt∇fit (xt)
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Strongly convex and smooth problems

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)]

Assumptions:

F (x) is L-smooth and µ-strongly convex (we do not require
assumptions on f (x; ξ));

Given ξ0, . . . , ξt−1, g(xt , ξt) is an unbiased estimator of ∇F (xt), i.e.,

E
[
g(xt , ξt)

∣∣ξ0, . . . , ξt−1

]
= ∇F (xt);

For all x, we have E
[
∥g(x, ξ)∥22

]
≤ σ2︸ ︷︷ ︸

bounded variance

.
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Convergence with fixed stepsizes

Under the assumptions in page 7, if ηt = η ≤ 1/(2L), then SGD achieves

E
[
∥xt − x∗∥22

]
≤ (1− 2ηµ)t ∥x0 − x∗∥22 +

ησ2

2µ
;

fast (linear) convergence at the very beginning

converges to some neighborhood of x∗

smaller stepsize η yield better converging points
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One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, half the stepsize
and continue SGD.
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Convergence with diminishing stepsizes

Under the assumptions in page 7, if ηt =
θ

t+1 for some θ > 1
2µ , then SGD

achieves
E
[
∥xt − x∗∥22

]
≤ αθ

t + 1

where αθ = max
{
∥x0 − x∥22 ,

2θ2σ2

2µθ−1

}
.
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Convex and smooth problems

min
x∈Rd

F (x) ≜ Eξ[f (x; ξ)]

Assumptions:

F is L-smooth and convex;

Given ξ0, . . . , ξt−1, g(xt , ξt) is an unbiased estimator of ∇F (xt);

For all x, we have E[∥g(x, ξ)∥22] ≤ σ2︸ ︷︷ ︸
bounded variance

.
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Convex and smooth problems

Suppose we return a weighted average

x̃t =
t∑

k=0

ηk∑t
j=0 ηj

xk

If F is convex, we have

E[F (x̃t)− F (x∗)] ≤
∥x0 − x∗∥22 +

∑t
k=0 σ

2η2k
2
∑t

k=0 ηk
.

If we choose ηt = Θ(1/
√
t), we can get

E[F (x̃t)− F (x∗)] ≤ O

(
∥x0 − x∗∥22 + σ2 log t√

t

)
.

Lecture 11 OptML December 17th, 2024 12 / 14



Convex and smooth problems

If we return

x̃t =
t∑

k=⌈ t
2
⌉

ηkxk∑t
j=⌈ t

2
⌉ ηj

Then we have

E[F (x̃t)−F (x∗)] ≤
∥x0 − x∗∥22 +

∑t
k=⌈ t

2
⌉ σ

2η2k

2
∑t

k=⌈ t
2
⌉ ηk

= O

(
∥x0 − x∗∥22 + σ2

√
t

)
.
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Comparisons with batch GD

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi (x).

iteration complexity per-iteration total

batch GD κ log(1/ϵ) n nκ log(1/ϵ)

SGD 1/ϵ 1 1/ϵ

Table: Convergence rate for the strongly convex case

iteration complexity per-iteration total

batch GD 1/ϵ n n/ϵ

SGD 1/ϵ2 1 1/ϵ2

Table: Convergence rate for the convex case
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