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Review of first-order methods

condition Subgradient | proximal Nestrov's Lower
descent GD AGD bound
convex 0 (%) o (%) O(\%) Q(\k)
strongly 1 1 1 1
convex o(}) O(klogl) | O(vrlogl) | Q(Vrlog?)
Table: Iteration complexity of first-order methods
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@ Second-order Methods
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Newton's methods

Recall that optimizing smooth function f(x) by gradient descent

1
Xtr1 = X¢ — ZVf(xt)

is achieved by minimizing

L
mxin f(xe) + (VF(xe),x — x¢) + >

If we can compute Hessian matrix, we can minimize

2
[ = x>

min f(xe) + (VF(xe), x — X¢) + %(x — X, V2F(x¢) (X — x¢)).

Suppose V2f(x;) is non-singular, then we achieve Newton's method

xer1 =Xt — (V2F(x:)) 'V F(xe).
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Local quadratic convergence rate

Suppose the twice differentiable function f : RY — R has Ly-Lipschitz

continuous Hessian and local minimizer x* with V2f(x*) = pul, then the
Newton's method

Xt41 = X¢ — (V2f(xt))_1Vf(xt)

with ||xg — x*||, < p/(2L2) holds that

L 2
X1 — X", < m e — x*|I5 -
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Local quadratic convergence rate

The quadratic convergence means

Lo \ Lo o)
x+1—x|<<x—x|>
e Iy = { = lixe =7l

which leads to

L2 xr — x'| <(L2 Ix x*H)zT
Ly o (e
7 2=\ u 2

The iteration complexity of Newton's method is O(loglog(1/¢)).
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Standard Newton's Method

Strengths:

@ The quadratic convergence is very fast (even for ill-conditioned case).

Weakness:
© The convergence guarantee is local.
@ Each iteration requires O(d3) time.
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© Classical Quasi-Newton methods
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Key idea

Approximate the Hessian matrix using only gradient information
X1 = Xp — UtG;IVf(Xt)-

We hope:
@ using only gradient information
@ using limited memory

@ achieving super-linear convergence
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Secant equation

For quadratic function

Q(x) = %XTAX —b'x,

we have VQ(x¢11) — VQ(x¢) = V2 Q(Xer1)(Xes1 — Xe)-
For general f(x) with Lipschitz continuous Hessian, we have
Vi(xey1) — VF(xe) = sz(xtH)(xtH —X¢) + o([[xe41 — XtH2)7

which leads to

vf(Xt+1) — Vf(xt) ~ V2f(xt+1)(xt+1 — Xt).
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Classical Quasi-Newton methods

Classical Quasi-Newton methods target to find G;y; such that
Vf(xe41) = VF(xe) = Gepa(Xer1 — Xe)
and update the variable as
Xep1 = X¢ — 0:G; L VF(xe).
The secant equation admit an infinite number of solutions. How to choose G117

For given G; or G; !, we hope
@ {x;} converges to x* efficiently;
@ G,y is close to G¢;

@ Gyyqor G;ll can be constructed/stored efficiently.
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Woodbury matrix identity

The Woodbury matrix identity is
(A+UCV) ' =A"1 - Aly(C 4 VATIU) VAT

where A € R9%9, C € Rk*k U € RY*k and V € Rk*9.

ForA=G,, U=2Z, V=2 and C =1, we let
Gi1 =G+ 2,2/,
then
G L =G'-G;'Z,(1+Z/G;'Z,) 'z G !

can be computed within O(kd?) flops for given G, ..
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The SR1 method

We consider secant condition and the symmetric rank one (SR1) update
Ye = Geiase,
Gt+1 = Gt + ZtZ;r.

where s; = X1 — X and y = VF(Xe11) — VF(xt).

It implies

(Yt - Gtst)(yt - Gtst)T

G =G; +
o ' (Yt - Gtst)Tst

By Woodbury matrix identity, we have

G-l g1y (5= Gily)(se —Gi'y) "
. ' (St - G;1Yt)TYt

The updating time is O(d?) per iteration.
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The Davidon-Fletcher-Powell (DFP) method

Let G¢;1 be the solution of following matrix optimization problem
cin 1IG = Gellg;
st G= GT, Gs; =y,

where the weighted norm || - [[g is defined as
1
IAlg, = ||G:*AG, V2|, with G, = / V2f(x¢ + T(Xe 1 — %)) dr.
0

It implies DFP update
T T T
s s
Geit = (l—y;f )Gt<l— ;yf>+y;yf .
Yr St Yt St Yt St

The corresponding update to Hessian estimator is

Gt_lyty:Gt_l st;r
YIGt_lh Y;rst
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The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Let G;; be the solution of the following matrix optimization problem

H?Ri?xd [H —H|,

st H=H" Hy,=s,,

where H, = G;! and the weighted norm || - g, is defined as

1
IAllg, = |GY°AGY?||.  with Gt:/ V2F(xe 4+ T(Xer1 — X)) d7.
0

It implies BFGS update

T T T

_ Sty —1 YiS; S¢St

Gl = (I 2t )G <I - ) + . rank-2 update
o yise) yise)  yist

The corresponding update to Hessian estimator is

T T
Gisis; Gr Yy,

T Te
s; Gs; Y: St

Gt+1 =G; —
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Local superlinear convergence

Theorem (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under
mild conditions, SR1/DFP/BFGS achieves

o e =%l
1% Jxe —x°[,

=0

@ iteration complexity: larger than Newton methods but smaller than
gradient methods

@ asymptotic result: holds when t — oo
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Explicit local convergence rate

Suppose the objective is p-strongly-convex and L-smooth and let

k=L/n and A=/ VF(x)T(V2F(xe) 1V F (xe).

@ For classical DFP method, we have

At <O <<K2td>t/2) .

@ For classical BFGS method, we have

weo( (%)),

@ For classical SR1 method, we have

Ae<O <<d':“>t/2> .
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© Limited-Memory Quasi-Newton methods
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Quasi-Newton Methods

Classical quasi-Newton methods are too expensive for large d.
o Each iteration requires O(d?) time complexity.

o The space complexity is O(d?).
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Limited-memory BFGS (L-BFGS)

The BFGS update can be written as
Hi1 = VtTHtVt + PtStStT7
where p: = (y; s¢)7! and V; = | — pry;s, .
Limited-memory BFGS method keeps the m most recent vector pairs
{si,yi}h_m

and applying BFGS update m times on some initial estimator Hy o = dx ol.
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Limited-memory BFGS (L-BFGS)

The update of L-BFGS can be written as

He=(Vi_1 - Vi) Hko(Vi—m- .- Vi 1)
+ pem(Viet -+ Vic min)Sk-mSkem(Vk—m+1 - - - V1)
+ o mi1(Viss - ViCme2)Sk-m1Sk—myr (Vkomya - Vi 1)
Fo.

-
+ Pk—1Sk—1Sk_1-

The iteration of L-BFGS is efficient for small m.
o Computing H,Vf(xx) requires O(md) flops for given V£ (x).
@ The storage of {s,-,y,-};‘;kl_m
@ Whether L-BFGS can also achieve super linear convergence is still
unclear.

@ The idea also works for SR1 and DFP.

requires O(md) space complexity.
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Summary

method convergence | time complexity | space complexity
Newton's method | quadratic O(d3) 0(d?)
SR1/DFP/BFGS | super linear 0(d?) 0(d?)
linear or
L-BFGS super linear? O(md) O(md)
GD/AGD linear O(d) O(d)

Table: Convergence property for strongly convex functions
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