Optimization for Machine Learning 机器学习中的优化方法

陈程

华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn

Review of first-order methods

condition	Subgradient descent	proximal GD	Nestrov's AGD	Lower bound
convex	$O\left(\frac{1}{arepsilon^2}\right)$	$O\left(\frac{1}{arepsilon} ight)$	$O(rac{1}{\sqrt{arepsilon}})$	$\Omega(rac{1}{\sqrt{arepsilon}})$
strongly convex	$O\left(\frac{1}{\varepsilon}\right)$	$O\left(\kappa\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\kappa}\log\frac{1}{\varepsilon}\right)$	$\Omega\left(\sqrt{\kappa}\log\frac{1}{\varepsilon}\right)$

Table: Iteration complexity of first-order methods

 Lecture 10
 OptML
 December 10th, 2024
 2 / 19

Outline

Second-order Methods

2 Classical Quasi-Newton methods

3 Limited-Memory Quasi-Newton methods

 Lecture 10
 OptML
 December 10th, 2024
 3 / 19

Newton's methods

Recall that optimizing smooth function $f(\mathbf{x})$ by gradient descent

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t)$$

is achieved by minimizing

$$\min_{\mathbf{x}} f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_t\|_2^2.$$

If we can compute Hessian matrix, we can minimize

$$\min_{\mathbf{x}} f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{1}{2} \langle \mathbf{x} - \mathbf{x}_t, \nabla^2 f(\mathbf{x}_t) (\mathbf{x} - \mathbf{x}_t) \rangle.$$

Suppose $\nabla^2 f(\mathbf{x}_t)$ is non-singular, then we achieve Newton's method

$$\mathbf{x}_{t+1} = \mathbf{x}_t - (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t).$$

Lecture 10 OptML

Local quadratic convergence rate

Suppose the twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ has L_2 -Lipschitz continuous Hessian and local minimizer \mathbf{x}^* with $\nabla^2 f(\mathbf{x}^*) \succeq \mu \mathbf{I}$, then the Newton's method

$$\mathbf{x}_{t+1} = \mathbf{x}_t - (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t)$$

with $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \le \mu/(2L_2)$ holds that

$$\left\|\mathbf{x}_{t+1} - \mathbf{x}^*\right\|_2 \leq \frac{L_2}{\mu} \left\|\mathbf{x}_t - \mathbf{x}^*\right\|_2^2.$$

Local quadratic convergence rate

The quadratic convergence means

$$\frac{L_{2}}{\mu} \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|_{2} \leq \left(\frac{L_{2}}{\mu} \|\mathbf{x}_{t} - \mathbf{x}^{*}\|_{2}\right)^{2}$$

which leads to

$$\left\| \frac{L_2}{\mu} \left\| \mathbf{x}_T - \mathbf{x}^* \right\|_2 \le \left(\frac{L_2}{\mu} \left\| \mathbf{x}_0 - \mathbf{x}^* \right\|_2 \right)^{2^T}$$

The iteration complexity of Newton's method is $\mathcal{O}(\log \log (1/\epsilon))$.

 Lecture 10
 OptML
 December 10th, 2024
 5 / 19

Standard Newton's Method

Strengths:

• The quadratic convergence is very fast (even for ill-conditioned case).

Weakness:

- 1 The convergence guarantee is local.
- ② Each iteration requires $O(d^3)$ time.

Outline

Second-order Methods

Classical Quasi-Newton methods

3 Limited-Memory Quasi-Newton methods

 Lecture 10
 OptML
 December 10th, 2024
 7 / 19

Key idea

Approximate the Hessian matrix using only gradient information

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t).$$

We hope:

- using only gradient information
- using limited memory
- achieving super-linear convergence

Secant equation

For quadratic function

$$Q(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x},$$

we have $\nabla Q(\mathbf{x}_{t+1}) - \nabla Q(\mathbf{x}_t) = \nabla^2 Q(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t)$.

For general $f(\mathbf{x})$ with Lipschitz continuous Hessian, we have

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) = \nabla^2 f(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t) + o(\|\mathbf{x}_{t+1} - \mathbf{x}_t\|_2),$$

which leads to

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) \approx \nabla^2 f(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t).$$

Classical Quasi-Newton methods

Classical Quasi-Newton methods target to find \mathbf{G}_{t+1} such that

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) = \mathbf{G}_{t+1}(\mathbf{x}_{t+1} - \mathbf{x}_t)$$

and update the variable as

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t).$$

The secant equation admit an infinite number of solutions. How to choose \mathbf{G}_{t+1} ?

For given \mathbf{G}_t or \mathbf{G}_t^{-1} , we hope

- $\{x_t\}$ converges to x^* efficiently;
- \mathbf{G}_{t+1} is close to \mathbf{G}_t ;
- \mathbf{G}_{t+1} or \mathbf{G}_{t+1}^{-1} can be constructed/stored efficiently.

Lecture 10 OptML December 10th, 2024

Woodbury matrix identity

The Woodbury matrix identity is

$$(\mathbf{A} + \mathbf{UCV})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{VA}^{-1}\mathbf{U})^{-1}\mathbf{VA}^{-1},$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$, $\mathbf{C} \in \mathbb{R}^{k \times k}$, $\mathbf{U} \in \mathbb{R}^{d \times k}$ and $\mathbf{V} \in \mathbb{R}^{k \times d}$.

For
$$\mathbf{A} = \mathbf{G}_t$$
, $\mathbf{U} = \mathbf{Z}_t$, $\mathbf{V} = \mathbf{Z}_t^{\top}$ and $\mathbf{C} = \mathbf{I}$, we let

$$\mathbf{G}_{t+1} = \mathbf{G}_t + \mathbf{Z}_t \mathbf{Z}_t^{\top},$$

then

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} - \mathbf{G}_t^{-1} \mathbf{Z}_t (\mathbf{I} + \mathbf{Z}_t^{\top} \mathbf{G}_t^{-1} \mathbf{Z}_t)^{-1} \mathbf{Z}_t^{\top} \mathbf{G}_t^{-1}$$

can be computed within $\mathcal{O}(kd^2)$ flops for given \mathbf{G}_t^{-1} .

Lecture 10 OptML December 10th, 2024

The SR1 method

We consider secant condition and the symmetric rank one (SR1) update

$$\begin{cases} \mathbf{y}_t = \mathbf{G}_{t+1} \mathbf{s}_t, \\ \mathbf{G}_{t+1} = \mathbf{G}_t + \mathbf{z}_t \mathbf{z}_t^\top. \end{cases}$$

where $\mathbf{s}_t = \mathbf{x}_{t+1} - \mathbf{x}_t$ and $\mathbf{y}_t = \nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t)$.

It implies

$$\mathbf{G}_{t+1} = \mathbf{G}_t + rac{(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)^{\top}}{(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)^{\top} \mathbf{s}_t}.$$

By Woodbury matrix identity, we have

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} + \frac{(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)^{\top}}{(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)^{\top} \mathbf{y}_t}.$$

The updating time is $O(d^2)$ per iteration.

The Davidon-Fletcher-Powell (DFP) method

Let \mathbf{G}_{t+1} be the solution of following matrix optimization problem

$$egin{aligned} \min_{\mathbf{G} \in \mathbb{R}^{d imes d}} \|\mathbf{G} - \mathbf{G}_t\|_{\mathbf{\bar{G}}_t^{-1}} \ & ext{s.t} & \mathbf{G} = \mathbf{G}^{ op}, & \mathbf{G}\mathbf{s}_t = \mathbf{y}_t, \end{aligned}$$

where the weighted norm $\|\cdot\|_{\bar{\mathbf{G}}_{+}}$ is defined as

$$\|\mathbf{A}\|_{\mathbf{\bar{G}}_t} = \|\mathbf{\bar{G}}_t^{-1/2}\mathbf{A}\mathbf{\bar{G}}_t^{-1/2}\|_F \quad \text{with} \quad \mathbf{\bar{G}}_t = \int_0^1 \nabla^2 f(\mathbf{x}_t + \tau(\mathbf{x}_{t+1} - \mathbf{x}_t)) \, \mathrm{d}\tau.$$

It implies DFP update

$$\mathbf{G}_{t+1} = \left(\mathbf{I} - \frac{\mathbf{y}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) \mathbf{G}_t \left(\mathbf{I} - \frac{\mathbf{s}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) + \frac{\mathbf{y}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}.$$

The corresponding update to Hessian estimator is

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} - \frac{\mathbf{G}_t^{-1} \mathbf{y}_t \mathbf{y}_t^\top \mathbf{G}_t^{-1}}{\mathbf{y}_t^\top \mathbf{G}_t^{-1} \mathbf{y}_t} + \frac{\mathbf{s}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}. \quad \text{rank-2 update}$$

Lecture 10 OptML December 10th, 2024

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Let \mathbf{G}_{t+1}^{-1} be the solution of the following matrix optimization problem

$$\begin{aligned} & \min_{\mathbf{H} \in \mathbb{R}^{d \times d}} \|\mathbf{H} - \mathbf{H}_t\|_{\bar{\mathbf{G}}_t} \\ & \text{s.t.} \quad \mathbf{H} = \mathbf{H}^\top, \quad \mathbf{H} \mathbf{y}_t = \mathbf{s}_t, \end{aligned}$$

where $\mathbf{H}_t = \mathbf{G}_t^{-1}$ and the weighted norm $\|\cdot\|_{\mathbf{G}_t}$ is defined as

$$\|\mathbf{A}\|_{\mathbf{\bar{G}}_t} = \|\mathbf{\bar{G}}_t^{1/2} \mathbf{A} \mathbf{\bar{G}}_t^{1/2}\|_F \quad \text{with} \quad \mathbf{\bar{G}}_t = \int_0^1 \nabla^2 f(\mathbf{x}_t + \tau(\mathbf{x}_{t+1} - \mathbf{x}_t)) \, \mathrm{d}\tau.$$

It implies BFGS update

$$\mathbf{G}_{t+1}^{-1} = \left(\mathbf{I} - \frac{\mathbf{s}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) \mathbf{G}_t^{-1} \left(\mathbf{I} - \frac{\mathbf{y}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) + \frac{\mathbf{s}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}. \quad \text{rank-2 update}$$

The corresponding update to Hessian estimator is

$$\mathbf{G}_{t+1} = \mathbf{G}_t - \frac{\mathbf{G}_t \mathbf{s}_t \mathbf{s}_t^\top \mathbf{G}_t}{\mathbf{s}_t^\top \mathbf{G}_t \mathbf{s}_t} + \frac{\mathbf{y}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}.$$

 Lecture 10
 OptML
 December 10th, 2024
 13 / 19

Local superlinear convergence

Theorem (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under mild conditions, SR1/DFP/BFGS achieves

$$\lim_{t \to \infty} \frac{\left\|\mathbf{x}_{t+1} - \mathbf{x}^*\right\|_2}{\left\|\mathbf{x}_t - \mathbf{x}^*\right\|_2} = 0$$

- iteration complexity: larger than Newton methods but smaller than gradient methods
- ullet asymptotic result: holds when $t o \infty$

 Lecture 10
 OptML
 December 10th, 2024
 14 / 19

Explicit local convergence rate

Suppose the objective is μ -strongly-convex and L-smooth and let

$$\kappa = L/\mu$$
 and $\lambda_t = \sqrt{\nabla f(\mathbf{x}_t)^{\top}(\nabla^2 f(\mathbf{x}_t))^{-1}\nabla f(\mathbf{x}_t)}.$

For classical DFP method, we have

$$\lambda_t \leq \mathcal{O}\left(\left(\frac{\kappa^2 d}{t}\right)^{t/2}\right).$$

Por classical BFGS method, we have

$$\lambda_t \leq \mathcal{O}\left(\left(\frac{\kappa d}{t}\right)^{t/2}\right).$$

For classical SR1 method, we have

$$\lambda_t \leq \mathcal{O}\left(\left(\frac{d\ln\kappa}{t}\right)^{t/2}\right).$$

Lecture 10 OptML

Outline

Second-order Methods

2 Classical Quasi-Newton methods

3 Limited-Memory Quasi-Newton methods

Quasi-Newton Methods

Classical quasi-Newton methods are too expensive for large d.

- Each iteration requires $\mathcal{O}(d^2)$ time complexity.
- The space complexity is $\mathcal{O}(d^2)$.

Limited-memory BFGS (L-BFGS)

The BFGS update can be written as

$$\mathbf{H}_{t+1} = \mathbf{V}_t^{\top} \mathbf{H}_t \mathbf{V}_t + \rho_t \mathbf{s}_t \mathbf{s}_t^{\top},$$

where $ho_t = (\mathbf{y}_t^{ op} \mathbf{s}_t)^{-1}$ and $\mathbf{V}_t = \mathbf{I} -
ho_t \mathbf{y}_t \mathbf{s}_t^{ op}$.

Limited-memory BFGS method keeps the *m* most recent vector pairs

$$\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m}^{k-1}$$

and applying BFGS update m times on some initial estimator $\mathbf{H}_{k,0} = \delta_{k,0}\mathbf{I}$.

 Lecture 10
 OptML
 December 10th, 2024
 17 / 19

Limited-memory BFGS (L-BFGS)

The update of L-BFGS can be written as

$$\begin{aligned} \mathbf{H}_{k} = & (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m}^{\top}) \mathbf{H}_{k,0} (\mathbf{V}_{k-m} \dots \mathbf{V}_{k-1}) \\ &+ \rho_{k-m} (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m+1}^{\top}) \mathbf{s}_{k-m} \mathbf{s}_{k-m}^{\top} (\mathbf{V}_{k-m+1} \dots \mathbf{V}_{k-1}) \\ &+ \rho_{k-m+1} (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m+2}^{\top}) \mathbf{s}_{k-m+1} \mathbf{s}_{k-m+1}^{\top} (\mathbf{V}_{k-m+2} \dots \mathbf{V}_{k-1}) \\ &+ \dots \\ &+ \rho_{k-1} \mathbf{s}_{k-1} \mathbf{s}_{k-1}^{\top} \mathbf{s}_{k-1}^{\top}. \end{aligned}$$

The iteration of L-BFGS is efficient for small m.

- Computing $\mathbf{H}_k \nabla f(\mathbf{x}_k)$ requires $\mathcal{O}(md)$ flops for given $\nabla f(\mathbf{x}_k)$.
- The storage of $\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m}^{k-1}$ requires $\mathcal{O}(md)$ space complexity.
- Whether L-BFGS can also achieve super linear convergence is still unclear.
- The idea also works for SR1 and DFP.

 Lecture 10
 OptML
 December 10th, 2024
 18 / 19

Summary

method	convergence	time complexity	space complexity
Newton's method	quadratic	$O(d^3)$	$O(d^2)$
SR1/DFP/BFGS	super linear	$O(d^2)$	$O(d^2)$
L-BFGS	linear or super linear?	O(md)	O(md)
GD/AGD	linear	O(d)	O(d)

Table: Convergence property for strongly convex functions

 Lecture 10
 OptML
 December 10th, 2024
 19 / 19