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Review of first-order methods
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Table: Iteration complexity of first-order methods
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Outline

1 Second-order Methods

2 Classical Quasi-Newton methods

3 Limited-Memory Quasi-Newton methods
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Newton’s methods

Recall that optimizing smooth function f (x) by gradient descent

xt+1 = xt −
1

L
∇f (xt)

is achieved by minimizing

min
x

f (xt) + ⟨∇f (xt), x− xt⟩+
L

2
∥x− xt∥22 .

If we can compute Hessian matrix, we can minimize

min
x

f (xt) + ⟨∇f (xt), x− xt⟩+
1

2
⟨x− xt ,∇2f (xt)(x− xt)⟩.

Suppose ∇2f (xt) is non-singular, then we achieve Newton’s method

xt+1 = xt − (∇2f (xt))
−1∇f (xt).
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Local quadratic convergence rate

Suppose the twice differentiable function f : Rd → R has L2-Lipschitz
continuous Hessian and local minimizer x∗ with ∇2f (x∗) ⪰ µI, then the
Newton’s method

xt+1 = xt − (∇2f (xt))
−1∇f (xt)

with ∥x0 − x∗∥2 ≤ µ/(2L2) holds that

∥xt+1 − x∗∥2 ≤
L2
µ

∥xt − x∗∥22 .
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Local quadratic convergence rate

The quadratic convergence means

L2
µ

∥xt+1 − x∗∥2 ≤
(
L2
µ

∥xt − x∗∥2
)2

which leads to

L2
µ

∥xT − x∗∥2 ≤
(
L2
µ

∥x0 − x∗∥2
)2T

The iteration complexity of Newton’s method is O(log log(1/ϵ)).
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Standard Newton’s Method

Strengths:

1 The quadratic convergence is very fast (even for ill-conditioned case).

Weakness:

1 The convergence guarantee is local.

2 Each iteration requires O(d3) time.
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Key idea

Approximate the Hessian matrix using only gradient information

xt+1 = xt − ηtG
−1
t ∇f (xt).

We hope:

using only gradient information

using limited memory

achieving super-linear convergence
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Secant equation

For quadratic function

Q(x) =
1

2
x⊤Ax− b⊤x,

we have ∇Q(xt+1)−∇Q(xt) = ∇2Q(xt+1)(xt+1 − xt).

For general f (x) with Lipschitz continuous Hessian, we have

∇f (xt+1)−∇f (xt) = ∇2f (xt+1)(xt+1 − xt) + o(∥xt+1 − xt∥2),

which leads to

∇f (xt+1)−∇f (xt) ≈ ∇2f (xt+1)(xt+1 − xt).
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Classical Quasi-Newton methods

Classical Quasi-Newton methods target to find Gt+1 such that

∇f (xt+1)−∇f (xt) = Gt+1(xt+1 − xt)

and update the variable as

xt+1 = xt − ηtG
−1
t ∇f (xt).

The secant equation admit an infinite number of solutions. How to choose Gt+1?

For given Gt or G
−1
t , we hope

{xt} converges to x∗ efficiently;

Gt+1 is close to Gt ;

Gt+1 or G−1
t+1 can be constructed/stored efficiently.
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Woodbury matrix identity

The Woodbury matrix identity is

(A+UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1,

where A ∈ Rd×d , C ∈ Rk×k , U ∈ Rd×k and V ∈ Rk×d .

For A = Gt , U = Zt , V = Z⊤
t and C = I, we let

Gt+1 = Gt + ZtZ
⊤
t ,

then

G−1
t+1 = G−1

t − G−1
t Zt(I+ Z⊤

t G
−1
t Zt)

−1Z⊤
t G

−1
t

can be computed within O(kd2) flops for given G−1
t .
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The SR1 method

We consider secant condition and the symmetric rank one (SR1) update{
yt = Gt+1st ,

Gt+1 = Gt + ztz⊤t .

where st = xt+1 − xt and yt = ∇f (xt+1)−∇f (xt).

It implies

Gt+1 = Gt +
(yt − Gtst)(yt − Gtst)⊤

(yt − Gtst)⊤st
.

By Woodbury matrix identity, we have

G−1
t+1 = G−1

t +
(st − G−1

t yt)(st − G−1
t yt)⊤

(st − G−1
t yt)⊤yt

.

The updating time is O(d2) per iteration.
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The Davidon-Fletcher-Powell (DFP) method

Let Gt+1 be the solution of following matrix optimization problem

min
G∈Rd×d

∥G− Gt∥Ḡ−1
t

s.t G = G⊤, Gst = yt ,

where the weighted norm ∥ · ∥Ḡt
is defined as

∥A∥Ḡt
=
∥∥Ḡ−1/2

t AḠ
−1/2
t

∥∥
F

with Ḡt =

∫ 1

0

∇2f (xt + τ(xt+1 − xt))dτ.

It implies DFP update

Gt+1 =

(
I− yts⊤t

y⊤t st

)
Gt

(
I− sty⊤t

y⊤t st

)
+

yty⊤t
y⊤t st

.

The corresponding update to Hessian estimator is

G−1
t+1 = G−1

t − G−1
t yty⊤t G

−1
t

y⊤t G
−1
t yt

+
sts⊤t
y⊤t st

. rank-2 update
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The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Let G−1
t+1 be the solution of the following matrix optimization problem

min
H∈Rd×d

∥H−Ht∥Ḡt

s.t H = H⊤, Hyt = st ,

where Ht = G−1
t and the weighted norm ∥ · ∥Ḡt

is defined as

∥A∥Ḡt
=
∥∥Ḡ1/2

t AḠ
1/2
t

∥∥
F

with Ḡt =

∫ 1

0

∇2f (xt + τ(xt+1 − xt))dτ.

It implies BFGS update

G−1
t+1 =

(
I− sty⊤t

y⊤t st

)
G−1

t

(
I− yts⊤t

y⊤t st

)
+

sts⊤t
y⊤t st

. rank-2 update

The corresponding update to Hessian estimator is

Gt+1 = Gt −
Gtsts⊤t Gt

s⊤t Gtst
+

yty⊤t
y⊤t st

.

Lecture 10 OptML December 10th, 2024 13 / 19



Local superlinear convergence

Theorem (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under
mild conditions, SR1/DFP/BFGS achieves

lim
t→∞

∥xt+1 − x∗∥2
∥xt − x∗∥2

= 0

iteration complexity: larger than Newton methods but smaller than
gradient methods

asymptotic result: holds when t → ∞
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Explicit local convergence rate

Suppose the objective is µ-strongly-convex and L-smooth and let

κ = L/µ and λt =
√
∇f (xt)⊤(∇2f (xt))−1∇f (xt).

1 For classical DFP method, we have

λt ≤ O

((
κ2d

t

)t/2
)
.

2 For classical BFGS method, we have

λt ≤ O

((
κd

t

)t/2
)
.

3 For classical SR1 method, we have

λt ≤ O

((
d lnκ

t

)t/2
)
.
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Quasi-Newton Methods

Classical quasi-Newton methods are too expensive for large d .

Each iteration requires O(d2) time complexity.

The space complexity is O(d2).
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Limited-memory BFGS (L-BFGS)

The BFGS update can be written as

Ht+1 = V⊤
t HtVt + ρtsts

⊤
t ,

where ρt = (y⊤t st)
−1 and Vt = I− ρtyts⊤t .

Limited-memory BFGS method keeps the m most recent vector pairs

{si , yi}k−1
i=k−m

and applying BFGS update m times on some initial estimator Hk,0 = δk,0I.
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Limited-memory BFGS (L-BFGS)

The update of L-BFGS can be written as

Hk =(V⊤
k−1 . . .V

⊤
k−m)Hk,0(Vk−m . . .Vk−1)

+ ρk−m(V
⊤
k−1 . . .V

⊤
k−m+1)sk−ms

⊤
k−m(Vk−m+1 . . .Vk−1)

+ ρk−m+1(V
⊤
k−1 . . .V

⊤
k−m+2)sk−m+1s

⊤
k−m+1(Vk−m+2 . . .Vk−1)

+ . . .

+ ρk−1sk−1s
⊤
k−1.

The iteration of L-BFGS is efficient for small m.

Computing Hk∇f (xk) requires O(md) flops for given ∇f (xk).

The storage of {si , yi}k−1
i=k−m requires O(md) space complexity.

Whether L-BFGS can also achieve super linear convergence is still
unclear.

The idea also works for SR1 and DFP.
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Summary

method convergence time complexity space complexity

Newton’s method quadratic O(d3) O(d2)

SR1/DFP/BFGS super linear O(d2) O(d2)

L-BFGS
linear or

super linear?
O(md) O(md)

GD/AGD linear O(d) O(d)

Table: Convergence property for strongly convex functions
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