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Final project

@ Projects will be evaluated based on a combination of:

o presentation (40%) at Tuesday of the 18th week
o report (60%), deadline: Tuesday of the 19th week

@ Projects can either be individual or in teams of size up to 3 students.

Plagiarism is forbidden!
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Final project

Types of projects:
@ optimization in application
@ methodology projects
@ survey projects

@ a new algorithm
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Review

. . convergence iteration
condition stepsize .
rate complexity
convex & smooth | 7 = 7 0 (3) 0(3)
strongly convex 1 < 1 t) 1
& smooth =1 | O((-3) O(rlog 2)

Table: Convergence Properties of GD & PGD

stepsize | COMVergence iteration
P rate complexity
convex ne A % 0] <%) 0(%)
strongly convex | 7y & % 0 (%) ) (%)

Table: Convergence Properties of Subgradient Descent
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Outline

@ Proximal gradient descent
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Composite problems

mingF(x) = f(x) + h(x)

@ f is convex and smooth
@ h is convex (may not be differentiable)

@ Let F* = miny F(x) be the optimal value
Example: ¢; regularized minimization:
mxin f(x) + Ax]||1

use {1 regularization to promote sparsity
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A proximal view of of gradient descent

We first revisit gradient descent
Xt+1 = Xt — e VF(Xt)
)

. 1
s = argmin { £(x0) + (V7 = x4 5 =l |
X Nt

first-order approximation

proximal term
By the optimality condition, x;41 is the point where
f(x¢) + (VF(x¢),x — x¢) and —2%“ X — x¢||3 have the same slope.
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How about projected gradient descent?

Xt+1 — 7DC(Xt - ntVf(Xt))
i}
. 1
Xt11 = arg min {f(xt) + (VF(x¢),x — Xx¢) + Z |Ix — xtH% + ]lc(x)}
X t
(1
=arg min {2 I — (x¢ — 7:VF(x))||3 + nt]lc(x)}
where

0, ifxeC
400, otherwise

le(x) = {
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Proximal operator (1T¥r%E )

Define the proximal operator

1
prox,(x) £ arg min {2 lIx — z||§ + h(z)}
z
for any convex function h.
Then, the update of projected gradient descent is

Xt+1 = ProX,. i, (xt — 0 VF(xt))
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Proximal gradient descent (AT¥mth/E NF#{%)

In each iteration, the proximal gradient descent method for composite
objective function F(x) = f(x) + h(x) computes

Xt41 = prox,hh(xt —neVE(xe)).

@ alternates between gradient updates on f and proximal minimization
on h

o useful if the prox;, can be efficiently computed
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Outline

© Proximal Operator
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Proximal operator

1
prox,(x) £ arg min {2 lIx — z||§ + h(z)}

o well-defined under very general conditions (including nonsmooth
convex functions)

@ can be evaluated efficiently for many widely used functions (in
particular, regularizers)

@ this abstraction is mathematically simple but covers many well-known
optimization algorithms
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Example: indicator functions

If h(x) = L¢ is the “indicator” function

h(x):{o’ ifxecC

400, otherwise

then

prox,(x) = argmin ||z — x||5  (Euclidean projection)
zeC
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Example: /1 Norm

If h(x) = A||x||1, then

(proxyp(x))i = st(xi; A)

where

Vst(x) =

X — A,
X+ A,
0,
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Basic rules of proximal operator

o affine addition: if f(x) = g(x) +a'x + b, then
proxs(x) = prox,(x — a)

e quadratic addition: if f(x) = g(x) + 5§ [[x — a||3, then

oxg(x) o ! X P a
rox = prox —x— —
proxe P e \1+ " 14,
e scaling and translation: if 7(x) = g(ax + b), then

proxs(x) = é (prox,2g(ax + b) — b)
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Basic rules of proximal operator

e norm composition: if f(x) = g(||x||,) with dom g = [0, c0), then

X
prox(x) = prowg(xl) - ¥x # 0
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Nonexpansiveness of proximal operators

o (firm nonexpansiveness)

{proxy(x1) — prox,(x2), x1 — x2) = [|prox,(x1) — prox,(x2)|l3

e (nonexpansiveness)

[[proxp(x1) — proxp(x2)l, < [[x1 — x2ll,
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Conjugate functions (F:HEKI%Y)

The conjugate of a function f is

Fr(y) = sup {{y,x) —f(x)}

x€dom f

(x)

\/ oo
Fenchel’s inequality: f(x) + *(y) > (y,x)
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Conjugate Functions

Property: If f is convex and closed. Then
0 ycdf(x) < xe€df(y)
o f*=1f

Examples:
@ Indicator function:

f(x) =1c(x),  f(y)= igg<x,y>

e Norm:
0, lyll+<1

+oo, |yl >1

)=l F(y) = {

where [ly[|. = supjy<1(x,y) is the dual norm.
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Moreau Decomposition

Suppose f is closed and convex. Then

X = proxz(x) + proxs«(x)
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Example: prox of support function

For any closed and convex set C, the support function is defined as
Sc(x) = sup,cc(x,2). Then

proxg,(x) = x — Pc(x)
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Examples

@ /5 norm:
prox| |, (x) = x = Py, (X)
where B”Hl = {Z’HZHl < ]_} is unit #1 ball.

e max function: Let g(x) = {x1,...,x,}, then
proxg(x) = x — Pa(x)

where A = {z € Ri|1Tz = 1} is probability simplex.
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Outline

© Convergence Analysis
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Convergence for Convex Problems

Suppose f is convex and L-smooth. The proximal graident descent with
stepsize n: = 1/L obeys

Llxo — x*|3

Flx) = Fix) < =72

@ Achieves better iteration complexity (O(1/¢)) than subgradient
method (O(1/£?)).
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Convergence for Strongly Convex Problems

Suppose f is p-strongly convex and L-smooth. The proximal graident
descent with stepsize 7 = 1/L obeys

2 M\t 2
Ixe = x5 < (1= 7)) lxo = x"[3-

@ Achieves linear convergence O(x log 1).
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Summary

. convergence iteration
stepsize .
rate complexity
e =1 O (1) 0(3)
strongl =110 — Lyt 1
gly convex | ny = (1 K) O(k log 2)

Table: Convergence Properties of Proximal Gradient Descent

. convergence | iteration
stepsize .
rate complexity
~ 1 1 1
m=g| o(%) | o)
strongly convex | 7y ~ % 0 (%) ) (%)
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