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Final project

Projects will be evaluated based on a combination of:

presentation (40%) at Tuesday of the 18th week
report (60%), deadline: Tuesday of the 19th week

Projects can either be individual or in teams of size up to 3 students.

Plagiarism is forbidden!
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Final project

Types of projects:

optimization in application

methodology projects

survey projects

a new algorithm
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Review

condition stepsize
convergence

rate
iteration
complexity

convex & smooth ηt =
1
L O
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)
O
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1
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)
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1
L O
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1− 1

κ

)t)
O(κ log 1

ε )

Table: Convergence Properties of GD & PGD
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Table: Convergence Properties of Subgradient Descent
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Outline

1 Proximal gradient descent

2 Proximal Operator

3 Convergence Analysis
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Composite problems

minxF (x) = f (x) + h(x)

f is convex and smooth

h is convex (may not be differentiable)

Let F ∗ = minx F (x) be the optimal value

Example: ℓ1 regularized minimization:

min
x

f (x) + λ∥x∥1

use ℓ1 regularization to promote sparsity
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A proximal view of of gradient descent

We first revisit gradient descent

xt+1 = xt − ηt∇f (xt)

⇕

xt+1 = argmin
x

{
f (xt) + ⟨∇f (xt), x− xt⟩︸ ︷︷ ︸

first-order approximation

+
1

2ηt
∥x− xt∥22︸ ︷︷ ︸

proximal term

}

By the optimality condition, xt+1 is the point where
f (xt) + ⟨∇f (xt), x− xt⟩ and − 1

2ηt
∥x− xt∥22 have the same slope.
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How about projected gradient descent?

xt+1 = PC(xt − ηt∇f (xt))

⇕

xt+1 =argmin
x

{
f (xt) + ⟨∇f (xt), x− xt⟩+

1

2ηt
∥x− xt∥22 + 1C(x)

}
=argmin

x

{
1

2
∥x− (xt − ηt∇f (xt))∥22 + ηt1C(x)

}
where

1C(x) =

{
0, if x ∈ C

+∞, otherwise
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Proximal operator (近端算子)

Define the proximal operator

proxh(x) ≜ argmin
z

{
1

2
∥x− z∥22 + h(z)

}
for any convex function h.

Then, the update of projected gradient descent is

xt+1 = proxηt1C(xt − ηt∇f (xt))
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Proximal gradient descent (近端梯度下降法)

In each iteration, the proximal gradient descent method for composite
objective function F (x) = f (x) + h(x) computes

xt+1 = proxηth(xt − ηt∇f (xt)).

alternates between gradient updates on f and proximal minimization
on h

useful if the proxh can be efficiently computed
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Outline

1 Proximal gradient descent

2 Proximal Operator

3 Convergence Analysis
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Proximal operator

proxh(x) ≜ argmin
z

{
1

2
∥x− z∥22 + h(z)

}

well-defined under very general conditions (including nonsmooth
convex functions)

can be evaluated efficiently for many widely used functions (in
particular, regularizers)

this abstraction is mathematically simple but covers many well-known
optimization algorithms
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Example: indicator functions

If h(x) = 1C is the “indicator” function

h(x) =

{
0, if x ∈ C

+∞, otherwise

then

proxh(x) = argmin
z∈C

∥z− x∥22 (Euclidean projection)
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Example: ℓ1 Norm

If h(x) = λ∥x∥1, then

(proxλh(x))i = ψst(xi ;λ) soft-thresholding

where

ψst(x) =


x − λ, if x > λ
x + λ, if x < −λ
0, otherwise
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Basic rules of proximal operator

affine addition: if f (x) = g(x) + a⊤x+ b, then

proxf (x) = proxg (x− a)

quadratic addition: if f (x) = g(x) + ρ
2 ∥x− a∥22, then

proxf (x) = prox 1
1+ρ

g

(
1

1 + ρ
x− ρ

1 + ρ
a

)
scaling and translation: if f (x) = g(ax+ b), then

proxf (x) =
1

a

(
proxa2g (ax+ b)− b

)
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Basic rules of proximal operator

norm composition: if f (x) = g(∥x∥2) with dom g = [0,∞), then

proxf (x) = proxg (∥x∥2)
x

∥x∥2
, ∀x ̸= 0
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Nonexpansiveness of proximal operators

(firm nonexpansiveness)

⟨proxh(x1)− proxh(x2), x1 − x2⟩ ≥ ∥proxh(x1)− proxh(x2)∥
2
2

(nonexpansiveness)

∥proxh(x1)− proxh(x2)∥2 ≤ ∥x1 − x2∥2
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Conjugate functions (共轭函数)

The conjugate of a function f is

f ∗(y) = sup
x∈dom f

{⟨y, x⟩ − f (x)}

Fenchel’s inequality: f (x) + f ∗(y) ≥ ⟨y, x⟩
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Conjugate Functions

Property: If f is convex and closed. Then

y ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(y)

f ∗∗ = f

Examples:

Indicator function:

f (x) = 1C(x), f ∗(y) = sup
x∈C

⟨x, y⟩

Norm:

f (x) = ∥x∥, f ∗(y) =

{
0, ∥y∥∗ ≤ 1

+∞, ∥y∥∗ > 1

where ∥y∥∗ = sup∥x∥≤1⟨x, y⟩ is the dual norm.

Lecture 08 OptML November 26th, 2024 17 / 23



Moreau Decomposition

Suppose f is closed and convex. Then

x = proxf (x) + proxf ∗(x)
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Example: prox of support function

For any closed and convex set C, the support function is defined as
SC(x) = supz∈C⟨x, z⟩. Then

proxSC(x) = x− PC(x)
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Examples

ℓ∞ norm:
prox∥·∥∞(x) = x− PB∥·∥1

(x)

where B∥·∥1 = {z|∥z∥1 ≤ 1} is unit ℓ1 ball.

max function: Let g(x) = {x1, . . . , xn}, then

proxg (x) = x− P∆(x)

where ∆ = {z ∈ Rn
+|1⊤z = 1} is probability simplex.
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Outline

1 Proximal gradient descent

2 Proximal Operator

3 Convergence Analysis
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Convergence for Convex Problems

Suppose f is convex and L-smooth. The proximal graident descent with
stepsize ηt = 1/L obeys

F (xt)− F (x∗) ≤
L ∥x0 − x∗∥22

2t
.

Achieves better iteration complexity (O(1/ε)) than subgradient
method (O(1/ε2)).
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Convergence for Strongly Convex Problems

Suppose f is µ-strongly convex and L-smooth. The proximal graident
descent with stepsize ηt = 1/L obeys

∥xt − x∗∥22 ≤
(
1− µ

L

)t
∥x0 − x∗∥22 .

Achieves linear convergence O(κ log 1
ε ).
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Summary

condition stepsize
convergence

rate
iteration
complexity

convex ηt =
1
L O

(
1
t

)
O
(
1
ε

)
strongly convex ηt =

1
L O

((
1− 1

κ

)t)
O(κ log 1

ε )

Table: Convergence Properties of Proximal Gradient Descent
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