Optimization for Machine Learning 机器学习中的优化方法

陈程

华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn

Review: gradient descent

For unconstrained convex optimization, the gradient descent method starts with an initial point \mathbf{x}_0 , and iteratively computes

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t).$$

For constrained convex optimization with constraint \mathcal{C} , the **projected** gradient descent method starts with an initial point x_0 , and iteratively computes

$$\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)).$$

Lecture 07 OptML November 19th, 2024 2/20

Review: convergence rate

condition	constrained	convergence rate	iteration complexity
strongly convex & smooth	no	$O\left(\left(1-rac{1}{\kappa} ight)^t ight)$	$O(\kappa \log \frac{1}{\varepsilon})$
strongly convex & smooth	yes	$O\left(\left(1-\frac{1}{\kappa}\right)^t\right)$	$O(\kappa \log \frac{1}{\varepsilon})$
convex & smooth	no	$O\left(\frac{1}{t}\right)$	$O\left(\frac{1}{\varepsilon}\right)$
convex & smooth	yes	$O\left(\frac{1}{t}\right)$	$O\left(\frac{1}{\varepsilon}\right)$

Table: Convergence Properties of GD & PGD

Can we drop the smoothness condition?

Outline

Subgradient descent method

Subgradient (次梯度)

We say \mathbf{g} is a subgradient of f at the point \mathbf{x} if

$$f(\mathbf{y}) \ge \underbrace{f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle}_{\text{a linear under-estimate of } f} \quad \forall \mathbf{y} \in \text{dom } f$$

The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} , denoted by $\partial f(\mathbf{x})$.

 Lecture 07
 OptML
 November 19th, 2024
 4 / 20

Subgradient descent method (次梯度下降法)

In each iteration, the (projected) subgradient descent method computes

$$\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}_t - \eta_t \mathbf{g}_t),$$

where \mathbf{g}_t is any subgradient of f at \mathbf{x}_t .

Remark: this update rule does NOT necessarily yield reduction w.r.t. the objective values.

> Lecture 07 OptML November 19th, 2024 5/20

Negative subgradients are not necessarily descent directions

Example:
$$f(\mathbf{x}) = |x_1| + 3|x_2|$$

at x = (1, 0):

- $\mathbf{g}_1 = (1,0) \in \partial f(\mathbf{x}), -\mathbf{g}_1$ is a descent direction;
- $\mathbf{g}_2 = (1,3) \in \partial f(\mathbf{x}), -\mathbf{g}_2$ is not a descent direction.

Lecture 07 OptML November 19th, 2024

Negative subgradients are not necessarily descent directions

Since $f(\mathbf{x}_t)$ is not necessarily monotone, we will keep track of the best point

$$f_{best,t} \triangleq \min_{1 \leq i \leq t} f(\mathbf{x}_i)$$

We denote $f^* = \min_{\mathbf{x}} f(\mathbf{x})$ the optimal objective value.

 Lecture 07
 OptML
 November 19th, 2024
 7 / 20

Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. Thus we start with Lipschitz continuous functions.

Remember that a function $f: \mathbb{R}^d \to \mathbb{R}$ is G-Lipschitz continuous if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, we have

$$|f(\mathbf{x}) - f(\mathbf{y})| \le G \|\mathbf{x} - \mathbf{y}\|_2$$
.

f is G-Lipschitz continuous implies that all its subgradients ${\bf g}$ is bounded, i.e., $\|{\bf g}\|_2 \leq G$.

Lecture 07 OptML November 19th, 2024

Polyak's stepsize

We'd like to optimize $\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2$, but don't have access to \mathbf{x}^*

Key idea (majorization-minimization): find another function that majorizes $\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2$, and optimize the majorizing function

Lemma. Projected subgradient update rule obeys

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2 \le \underbrace{\|\mathbf{x}_t - \mathbf{x}^*\|_2^2 - 2\eta_t(f(\mathbf{x}_t) - f^*) + \eta_t^2 \|\mathbf{g}_t\|_2^2}_{\text{fixed}}$$
(1)

 Lecture 07
 OptML
 November 19th, 2024
 9 / 20

Polyak's Stepsize

The majorizing function in equation (1) suggests a stepsize (Polyak '87)

$$\eta_t = \frac{f(\mathbf{x}_t) - f^*}{\|\mathbf{g}_t\|_2^2}$$

which leads to error reduction

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2 \le \|\mathbf{x}_t - \mathbf{x}^*\|_2^2 - \frac{(f(\mathbf{x}_t) - f^*)^2}{\|\mathbf{g}_t\|_2^2}$$

- require to know f*
- the estimation error is monotonically decreasing with Polyak's stepsize

Lecture 07 OptML November 19th, 2024

Convergence rate with Polyak's stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected subgradient descent with Polyak's stepsize obeys

$$f_{best,t} - f^* \le \frac{G \left\| \mathbf{x}_0 - \mathbf{x}^* \right\|_2}{\sqrt{t+1}}$$

Lecture 07 OptML November 19th, 2024

Example: projection onto intersection of convex sets

Let C_1 and C_2 be closed convex sets and suppose $C_1 \cap C_2 \neq \emptyset$. We want to find $\mathbf{x} \in C_1 \cap C_2$ which is the solution of

$$\min_{\mathbf{x} \in \mathcal{C}_1 \cap \mathcal{C}_2} \max \{ \textit{dist}_{\mathcal{C}_1}(\mathbf{x}), \textit{dist}_{\mathcal{C}_2}(\mathbf{x}) \},$$

where $dist_{\mathcal{C}}(\mathbf{x}) \triangleq \min_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|_{2}$

Lecture 07 OptML November 19th, 2024

Example: projection onto intersection of convex sets

For this problem, the subgradient method with Polyak's stepsize rule is equivalent to alternating projection

$$\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{C}_1}(\mathbf{x}_t), \qquad \mathbf{x}_{t+2} = \mathcal{P}_{\mathcal{C}_2}(\mathbf{x}_{t+1})$$

 Lecture 07
 OptML
 November 19th, 2024
 13 / 20

Other Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected subgradient descent obeys

$$f_{best,t} - f^* \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sum_{k=0}^t \eta_k^2 \|\mathbf{g}_k\|^2}{2\sum_{k=0}^t \eta_k}.$$

Diminishing step size: $\frac{\sum_{t=0}^{T} \eta_t^2}{\sum_{t=0}^{T} \eta_t} \to 0$ as $T \to \infty$

Other Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected subgradient descent obeys

$$f_{best,t} - f^* \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \sum_{k=0}^t \eta_k^2 \|\mathbf{g}_k\|^2}{2\sum_{k=0}^t \eta_k}.$$

If we choose $\eta_t = \frac{1}{\sqrt{t+1}}$, we get

$$f_{best,t} - f^* \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + G^2(\log(t+1) + 1)}{4\sqrt{t+1}}.$$

If we choose $\eta_t = \frac{1}{\sqrt{t+1}\|\mathbf{g}_t\|}$, we get

$$f_{best,t} - f^* \le \frac{G(\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + \log(t+1) + 1)}{4\sqrt{t+1}}.$$

 Lecture 07
 OptML
 November 19th, 2024
 15 / 20

Without knowing $f_{best,t}$

Now we consider $\bar{\mathbf{x}}_t = \sum_{k=0}^t \frac{\eta_k \mathbf{x}_k}{\sum_{i=0}^t \eta_i}$. By Jensen's inequality, we have

$$\sum_{k=0}^{t} \eta_k(f(\mathbf{x}_k) - f^*) = \left(\sum_{k=0}^{t} \eta_k\right) \left(\sum_{k=0}^{t} \frac{\eta_k}{\sum_{j=0}^{t} \eta_j}\right) (f(\mathbf{x}_k) - f^*)$$

$$\geq \left(\sum_{k=0}^{t} \eta_k\right) \left(f\left(\sum_{k=0}^{t} \frac{\eta_k \mathbf{x}_k}{\sum_{j=0}^{t} \eta_j}\right) - f^*\right)$$

$$= \left(\sum_{k=0}^{t} \eta_k\right) (f(\bar{\mathbf{x}}_t) - f^*)$$

 Lecture 07
 OptML
 November 19th, 2024
 16 / 20

Optimal result

Suppose f is convex and G-Lipschitz continuous over \mathcal{C} . Suppose \mathcal{C} is bounded and convex with diameter D>0, i.e., $\|\mathbf{x}-\mathbf{y}\|_2\geq D$ for any $\mathbf{x},\mathbf{y}\in\mathcal{C}$. If we choose $\eta_t=\frac{D}{G\sqrt{t+1}}$, we get

$$f(\bar{\mathbf{x}}_t) - f^* \leq \frac{DG}{\sqrt{t+1}},$$

where $\bar{\mathbf{x}}_t = \sum_{k=\lceil \frac{t}{2} \rceil}^t \frac{\eta_k \mathbf{x}_k}{\sum_{j=\lceil \frac{t}{2} \rceil}^t \eta_j}$ or $\bar{\mathbf{x}}_t = \min_{\lceil \frac{t}{2} \rceil \leq i \leq t} f(\mathbf{x}_i)$.

Lecture 07 OptML November 19th, 2024 17 / 20

Strongly convex and Lipschitz problems

Let f be μ -strongly convex and G-Lipschitz continuous over \mathcal{C} . If $\eta_t = \frac{2}{\mu(t+1)}$, then the projected subgradient descent obeys

$$f_{best,t} - f^* \le \frac{2G^2}{\mu(t+1)}.$$

Lecture 07 OptML November 19th, 2024 18 / 20

condition	stepsize	convergence rate	iteration complexity
convex & smooth	$\eta_t = \frac{1}{L}$	$O\left(\frac{1}{t}\right)$	$O\left(\frac{1}{\varepsilon}\right)$
strongly convex & smooth	$\eta_t = rac{1}{L}$	$O\left(\left(1-rac{1}{\kappa} ight)^t\right)$	$O(\kappa \log \frac{1}{\varepsilon})$

Table: Convergence Properties of GD & PGD

	stepsize	convergence rate	iteration complexity
convex	$\eta_t pprox rac{1}{\sqrt{t}}$	$O\left(\frac{1}{\sqrt{t}}\right)$	$O(\frac{1}{\varepsilon^2})$
strongly convex	$\eta_t pprox rac{1}{t}$	$O\left(\frac{1}{t}\right)$	$O\left(rac{1}{arepsilon} ight)$

Table: Convergence Properties of Subgradient Descent

Questions

