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Review: gradient descent

For unconstrained convex optimization, the gradient descent method
starts with an initial point xg, and iteratively computes

Xt41 = Xt — ntVf(xt).

For constrained convex optimization with constraint C, the projected
gradient descent method starts with an initial point xg, and iteratively
computes

Xt4+1 = PC(Xt - ntVf(xt)).
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Review: convergence rate

. . convergence iteration
condition constrained .
rate complexity
strongly convex t
& smooth no 0 <(1 B %) ) O(rlog %)
strongly convex t
& in}’/looth yes 0 <(1 B %) ) O(rlog %)
convex & 1 1
convex & 1 1
smooth yes 0 (?) o (e)

Table: Convergence Properties of GD & PGD

Can we drop the smoothness condition?
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Outline

@ Subgradient descent method
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Subgradient (IXHHE)

We say g is a subgradient of f at the point x if

f(y) > f(x)+<g,y—x)1 Vy € dom f

~~

a linear under-estimate of f

The set of all subgradients of f at x is called the subdifferential of f at
denoted by Of(x).
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Subgradient descent method ({XHHE T FEi%)

In each iteration, the (projected) subgradient descent method computes

xer1 = Pe(xe — 1:8t),
where g; is any subgradient of f at x;.

Remark: this update rule does NOT necessarily yield reduction w.r.t. the
objective values.
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Negative subgradients are not necessarily descent directions

Example: f(x) = |x1| + 3| x|
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at x = (1,0):
e g1 = (1,0) € 9f(x), —g1 is a descent direction;
e g = (1,3) € 9f(x), —g2 is not a descent direction.
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Negative subgradients are not necessarily descent directions

Since f(x¢) is not necessarily monotone, we will keep track of the best
point

fi £ min f(x;
best,t 1<i<t ( I)

We denote f* = miny f(x) the optimal objective value.
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Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. Thus we start with
Lipschitz continuous functions.

Remember that a function f : R? — R is G-Lipschitz continuous if for all
x,y € R?, we have

[F(x) = NI < Glx—yll,-

f is G-Lipschitz continuous implies that all its subgradients g is bounded,
e, gll, < G.
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Polyak’s stepsize

We'd like to optimize ||x¢+1 — x*||§ but don't have access to x*

Key idea (majorization-minimization): find another function that
majorizes ||x;+1 — x*||3, and optimize the majorizing function

Lemma. Projected subgradient update rule obeys

*112 %12 * 2
xe1 = XI5 < [[xe = x*[[3 =20 (F(xe) = £°) + 07 [|ge I3 (1)
—_————
fixed

majorizing function
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Polyak’'s Stepsize

The majorizing function in equation (1) suggests a stepsize (Polyak '87)

f(x;) — f*
77t - ( t) 2
HgtHz

which leads to error reduction

(F(xe) — £*)°

2 2
[Xe+1 — x5 < [Jxe — x*[|5 — 5
gell5

@ require to know f*

@ the estimation error is monotonically decreasing with Polyak's stepsize
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Convergence rate with Polyak's stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected
subgradient descent with Polyak’s stepsize obeys

G [Jxo — x|l

Vit+1

fbest,t —f* <
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Example: projection onto intersection of convex sets

Let C; and C, be closed convex sets and suppose C1 N Ca # (). We want to
find x € C1 N Cy which is the solution of

xergligcz max{di5t01 (X)7 diStc2 (x)}7

where distc(x) = minyec [|x — v/,

OptML e S, A



Example: projection onto intersection of convex sets

For this problem, the subgradient method with Polyak's stepsize rule is
equivalent to alternating projection

Xe+1 = Pe, (X¢), X2 = Po,(Xe41)
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Other Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected
subgradient descent obeys

%2
b e o= X5+ g millell®
est, = .
ZZZ:onk

T 2
Diminishing step size: ="t — 0as T — oo
t=0 "t
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Other Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected
subgradient descent obeys

2
fo < %0 — X*[I5 + D) —o 77 ll &kl
est, > .

2Zf<:o Nk
If we choose 1y = \/% we get
e o X3+ Glog(t + 1) + 1)
est, >

4t +1 )

If we choose 7y = ﬁ\lgrll’ we get

G(|lxo — x*||3 + log(t + 1) + 1)
4/t +1 '
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Without knowing fpest

Now we consider X; = Zk 05 "kx" . By Jensen’s inequality, we have

S (Fl) — ) (znk) (z Z?k ) (F(x) — )
k=0 k=0 2=j=0"lj
j 0"

Zﬁk) (%) — 1)
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Optimal result

Suppose f is convex and G-Lipschitz continuous over C. Suppose C is
bounded and convex with diameter D > 0, i.e., ||x —y||, > D for any

x,y € C. If we choose n; = G\/%, we get

DG
t+1

f(xe) — <

)

where X; = Zi:m S or Xp = minre <<, £(X))-
20 2y i 21="=
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Strongly convex and Lipschitz problems

Let f be p-strongly convex and G-Lipschitz continuous over C. If
Ne = ﬁ then the projected subgradient descent obeys

2G?
f < —.
best,t — /,L(t+1)
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Summary

. . convergence iteration
condition stepsize .
rate complexity
convex & smooth | 7 = 7 0 (3) 0(3)
strongly convex 1 < 1 t) 1
& smooth m=1 | 0((1-%) O(rlog 2)

Table: Convergence Properties of GD & PGD

stepsize | COMVergence iteration
P rate complexity
convex ne A % 0] <%) 0(%)
strongly convex | 7y & % 0 (%) 0 (%)

Table: Convergence Properties of Subgradient Descent
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Questions

e
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