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Review: gradient descent

For unconstrained convex optimization, the gradient descent method
starts with an initial point x0, and iteratively computes

xt+1 = xt − ηt∇f (xt).

For constrained convex optimization with constraint C, the projected
gradient descent method starts with an initial point x0, and iteratively
computes

xt+1 = PC(xt − ηt∇f (xt)).
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Review: convergence rate
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Table: Convergence Properties of GD & PGD

Can we drop the smoothness condition?
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Outline

1 Subgradient descent method
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Subgradient (次梯度)

We say g is a subgradient of f at the point x if

f (y) ≥ f (x) + ⟨g, y − x⟩,︸ ︷︷ ︸
a linear under-estimate of f

∀y ∈ dom f

The set of all subgradients of f at x is called the subdifferential of f at x,
denoted by ∂f (x).
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Subgradient descent method (次梯度下降法)

In each iteration, the (projected) subgradient descent method computes

xt+1 = PC(xt − ηtgt),

where gt is any subgradient of f at xt .

Remark: this update rule does NOT necessarily yield reduction w.r.t. the
objective values.
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Negative subgradients are not necessarily descent directions

Example: f (x) = |x1|+ 3|x2|

at x = (1, 0):

g1 = (1, 0) ∈ ∂f (x), −g1 is a descent direction;

g2 = (1, 3) ∈ ∂f (x), −g2 is not a descent direction.
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Negative subgradients are not necessarily descent directions

Since f (xt) is not necessarily monotone, we will keep track of the best
point

fbest,t ≜ min
1≤i≤t

f (xi )

We denote f ∗ = minx f (x) the optimal objective value.
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Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. Thus we start with
Lipschitz continuous functions.

Remember that a function f : Rd → R is G -Lipschitz continuous if for all
x, y ∈ Rd , we have

|f (x)− f (y)| ≤ G ∥x− y∥2 .

f is G -Lipschitz continuous implies that all its subgradients g is bounded,
i.e., ∥g∥2 ≤ G .
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Polyak’s stepsize

We’d like to optimize ∥xt+1 − x∗∥22, but don’t have access to x∗

Key idea (majorization-minimization): find another function that
majorizes ∥xt+1 − x∗∥22, and optimize the majorizing function

Lemma. Projected subgradient update rule obeys

∥xt+1 − x∗∥22 ≤ ∥xt − x∗∥22︸ ︷︷ ︸
fixed

−2ηt(f (xt)− f ∗) + η2t ∥gt∥
2
2︸ ︷︷ ︸

majorizing function

(1)
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Polyak’s Stepsize

The majorizing function in equation (1) suggests a stepsize (Polyak ’87)

ηt =
f (xt)− f ∗

∥gt∥22

which leads to error reduction

∥xt+1 − x∗∥22 ≤ ∥xt − x∗∥22 −
(f (xt)− f ∗)2

∥gt∥22

require to know f ∗

the estimation error is monotonically decreasing with Polyak’s stepsize
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Convergence rate with Polyak’s stepsize

Suppose f is convex and G -Lipschitz continuous over C. The projected
subgradient descent with Polyak’s stepsize obeys

fbest,t − f ∗ ≤
G ∥x0 − x∗∥2√

t + 1
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Example: projection onto intersection of convex sets

Let C1 and C2 be closed convex sets and suppose C1 ∩ C2 ̸= ∅. We want to
find x ∈ C1 ∩ C2 which is the solution of

min
x∈C1∩C2

max{distC1(x), distC2(x)},

where distC(x) ≜ miny∈C ∥x− y∥2
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Example: projection onto intersection of convex sets

For this problem, the subgradient method with Polyak’s stepsize rule is
equivalent to alternating projection

xt+1 = PC1(xt), xt+2 = PC2(xt+1)
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Other Stepsize

Suppose f is convex and G -Lipschitz continuous over C. The projected
subgradient descent obeys

fbest,t − f ∗ ≤
∥x0 − x∗∥22 +

∑t
k=0 η

2
k∥gk∥2

2
∑t

k=0 ηk
.

Diminishing step size:
∑T

t=0 η
2
t∑T

t=0 ηt
→ 0 as T → ∞
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Other Stepsize

Suppose f is convex and G -Lipschitz continuous over C. The projected
subgradient descent obeys

fbest,t − f ∗ ≤
∥x0 − x∗∥22 +

∑t
k=0 η

2
k∥gk∥2

2
∑t

k=0 ηk
.

If we choose ηt =
1√
t+1

, we get

fbest,t − f ∗ ≤
∥x0 − x∗∥22 + G 2(log(t + 1) + 1)

4
√
t + 1

.

If we choose ηt =
1√

t+1∥gt∥
, we get

fbest,t − f ∗ ≤
G (∥x0 − x∗∥22 + log(t + 1) + 1)

4
√
t + 1

.
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Without knowing fbest,t

Now we consider x̄t =
∑t

k=0
ηkxk∑t
j=0 ηj

. By Jensen’s inequality, we have

t∑
k=0

ηk(f (xk)− f ∗) =

(
t∑

k=0

ηk

)(
t∑

k=0

ηk∑t
j=0 ηj

)
(f (xk)− f ∗)

≥

(
t∑

k=0

ηk

)(
f

(
t∑

k=0

ηkxk∑t
j=0 ηj

)
− f ∗

)

=

(
t∑

k=0

ηk

)
(f (x̄t)− f ∗)
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Optimal result

Suppose f is convex and G -Lipschitz continuous over C. Suppose C is
bounded and convex with diameter D > 0, i.e., ∥x− y∥2 ≥ D for any
x, y ∈ C. If we choose ηt =

D
G
√
t+1

, we get

f (x̄t)− f ∗ ≤ DG√
t + 1

,

where x̄t =
∑t

k=⌈ t
2
⌉

ηkxk∑t
j=⌈ t

2 ⌉
ηj

or x̄t = min⌈ t
2
⌉≤i≤t f (xi ).
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Strongly convex and Lipschitz problems

Let f be µ-strongly convex and G -Lipschitz continuous over C. If
ηt =

2
µ(t+1) , then the projected subgradient descent obeys

fbest,t − f ∗ ≤ 2G 2

µ(t + 1)
.
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Summary

condition stepsize
convergence

rate
iteration
complexity

convex & smooth ηt =
1
L O

(
1
t

)
O
(
1
ε

)
strongly convex

& smooth
ηt =

1
L O

((
1− 1

κ

)t)
O(κ log 1

ε )

Table: Convergence Properties of GD & PGD

stepsize
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rate
iteration
complexity

convex ηt ≈ 1√
t

O
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t

)
O
(
1
ε

)
Table: Convergence Properties of Subgradient Descent
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Questions
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