
Optimization for Machine Learning
机器学习中的优化方法

陈陈陈 程程程

华华华东东东师师师范范范大大大学学学 软软软件件件工工工程程程学学学院院院

chchen@sei.ecnu.edu.cn

Lecture 06 OptML November 12th, 2024 1 / 23



Review of Gradient Descent

Consider an unconstrained convex optimization problem

min
x∈Rd

f (x).

The gradient descent method starts with an initial point x0, and
iteratively computes

xt+1 = xt − ηt∇f (xt).
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Review of Gradient Descent
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)
Table: Convergence Property of GD
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Outline

1 Projected gradient descent

2 Frank-Wolfe algorithm
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Constrained convex optimization

Suppose f is a convex function and C ∈ Rd is a closed and convex set.
The constrained convex optimization problem is:

min
x

f (x)

s.t. x ∈ C
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Optimality condition

Suppose f is convex and differentiable, C is close and convex. Then

x∗ ∈ argmin
x∈C

f (x) ⇐⇒ ⟨−∇f (x∗), z− x∗⟩ ≤ 0, ∀ z ∈ C
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Projected gradient descent (投影梯度下降法)

Idea: project onto C after every gradient descent step:

xt+1 = PC(xt − ηt∇f (xt)).

where PC(x) ≜ argminz∈C ∥z− x∥22 is Euclidean projection onto C.
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Think

Suppose f is a convex function and C is a closed convex set. Let

x̂ = argmin
x∈Rd

f (x) and x∗ = argmin
x∈C

f (x)

Is it true that
x∗ = PC(x̂)?

The answer is NO.
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Properties of projection

Let C ∈ Rd be closed and convex, z ∈ C, x ∈ Rd . Then

⟨x− PC(x), z− PC(x)⟩ ≤ 0.

∥x− PC(x)∥22 + ∥z− PC(x)∥22 ≤ ∥x− z∥22
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Properties of projection: nonexpansivness

Let C ∈ Rd be closed and convex. For any x, z ∈ Rd , we have

∥PC(x)− PC(z)∥2 ≤ ∥x− z∥2 .
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Examples

Projecting onto an affine subspace:

y = argmin
z

∥Az− x∥2 = (A⊤A)−1A⊤x

PA(x) = Ay = A(A⊤A)−1A⊤x
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Examples

Projecting onto a unit Euclidean ball (ℓ2 ball):

PC(x) = argmin
∥z∥2≤1

∥x− z∥2 =
x

max{1, ∥x∥2}
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Smooth and strongly convex constrained problems

min
x

f (x)

s.t. x ∈ C

f : L-smooth and µ-strongly convex

C ∈ Rd : closed and convex
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Smooth and strongly convex constrained problems

Let f be L-smooth and µ-strongly convex. If ηt = η = 2
µ+L , then PGD

obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

the same convergence rate as for the unconstrained case!
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Contraction Mapping (压缩映射)

Contraction mapping in Euclidean space: If a function f : X → X
satisfies

∥f (x)− f (y)∥2 ≤ γ ∥x − y∥2 , ∀ x , y ∈ X

for some γ ∈ (0, 1), then we call f is a contraction mapping.

The contraction mapping f has a unique fixed point x̂ , i.e., f (x̂) = x̂ .
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Smooth and convex constrained problems

min
x

f (x)

s.t. x ∈ C

f : convex and L-smooth

C ∈ Rd : closed and convex
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Smooth and convex constrained problems

Let f be convex and L-smooth. If ηt = η = 1
L , then PGD obeys

f (xt)− f (x∗) ≤ 2L∥x0 − x∗∥2

t

the same convergence rate as for the unconstrained case
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Convergence analysis

Recall the main steps when handling the unconstrained case:

Step 1: show improvement

f (xt+1) ≤ f (xt)−
1

2L
∥∇f (xt)∥22 not true for constrained case

Step 2: by convexity,

f (xt+1) ≤f (x∗)− ⟨∇f (xt), x
∗ − xt⟩ −

1

2L
∥∇f (xt)∥22

=f (x∗) +
L

2

{
∥xt − x∗∥22 −

∥∥∥∥xt − x∗ − 1

L
∇f (xt)

∥∥∥∥2
2

}
Step 3: telescoping

f (xT )− f (x∗) ≤ 1

T

T−1∑
t=0

(f (xt+1)− f (x∗)) ≤ L

2T
∥x0 − x∗∥2
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Convergence analysis

For the constrained case, we aims to replace ∇f (x) in the unconstrained
case by

gC(x) = L(x− PC(x−
1

L
∇f (x)))

We have gC(xt) = L(xt − xt+1).

Step 1: descent guarantee

f (xt+1) ≤ f (xt)−
1

2L
∥gC(xt)∥22

Step 2:

f (xt+1) ≤f (x∗)− ⟨gC(xt), x∗ − xt⟩ −
1

2L
∥gC(xt)∥22

Step 3: telescoping

f (xT )− f (x∗) ≤ 1

T

T−1∑
t=0

(f (xt+1)− f (x∗)) ≤ L

2T
∥x0 − x∗∥2
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Outline

1 Projected gradient descent

2 Frank-Wolfe algorithm
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Frank-Wolfe Algorithm

Consider following problem:
min
x

f (x)

s.t. Ax ≤ b

Computing projection is very expensive!
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Frank-Wolfe Algorithm

Algorithm 1 Frank-Wolfe (a.k.a. conditional gradient) Algorithm

for t = 1, 2, . . . do
yt = argminx∈C⟨∇f (xt), x⟩ //direction finding
xt+1 = (1− ηt)xt + ηtyt //line search and update
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Frank-Wolfe Algorithm

Algorithm 2 Frank-Wolfe (a.k.a. conditional gradient) Algorithm

for t = 1, 2, . . . do
yt = argminx∈C⟨∇f (xt), x⟩ //direction finding
xt+1 = (1− ηt)xt + ηtyt //line search and update

main step: linearization of the objective function

appealing when linear optimization is much cheaper than projection

stepsize: ηt =
2

t+2
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Frank-Wolfe Algorithm

Let f be convex and L-smooth. If ηt =
2

t+2 , one has

f (xt)− f (x∗) ≤ 2LD2

t + 2

where D = supx,y∈C ∥x− y∥2

For compact constraint sets, Frank-Wolfe attains ε-accuracy with O(1ε )
iterations.
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Summary

Table: Convergence Property of Projected GD

stepsize
convergence

rate
iteration
complexity

strongly convex
& smooth

ηt =
1
L O

((
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κ

)t)
O(κ log 1
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convex &
smooth

ηt =
1
L O

(
1
t

)
O
(
1
ϵ

)
Table: Convergence Property of FW
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