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Review of Gradient Descent

Consider an unconstrained convex optimization problem

in f(x).
2 )

The gradient descent method starts with an initial point xg, and
iteratively computes

Xer1 = Xe — NeVE(X¢).

OptML T e



Review of Gradient Descent

stepsize convergence iteration
P rate complexity
strongly convex | 1 = % or < 1 t) 1
1—= log =
& smooth ne = ﬁ o((1-3%) O(r log 2)
locally strongly 1 ( 1 t) 1
convex & smooth | 1t T L o(( H) O(rlog 2)
PL condition & 1 N 1
smooth m=1 |0 ((1 - %) ) O(x log 2)
convex & 1 1 1

Table: Convergence Property of GD

OptML

November 12th, 2024

3/23



Outline

© Projected gradient descent
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Constrained convex optimization

Suppose f is a convex function and C € R is a closed and convex set.
The constrained convex optimization problem is:

min f(x)

X

st.xeC
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Optimality condition

Suppose f is convex and differentiable, C is close and convex. Then

x" € argminf(x) <= (-Vf(x*),z—x") <0, VzelC
xeC
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Projected gradient descent (R HRE NFIE)

Idea: project onto C after every gradient descent step:
xer1 = Pe(xe — neVE(xe)).

where Pc(x) £ arg min, .o ||z — ng is Euclidean projection onto C.
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Think

Suppose f is a convex function and C is a closed convex set. Let

X =argmin f(x) and x* =argmin f(x)
xeRd xeC

Is it true that
x* = Pe(X)?

The answer is NO.
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Properties of projection

xc = Pe(x)
T «--a C
\\\
Y
z

Let C € RY be closed and convex, z € C, x € RY. Then
o (x —Pc(x),z—Pe(x)) <0.
o [x — Pe(x)l5+ l|lz — Pe(x)I3 < IIx — zI3
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Properties of projection: nonexpansivness

Let C € R? be closed and convex. For any x,z € RY, we have

[Pe(x) = Pe()l2 < lx =zl
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Examples

Pa(x)

Projecting onto an affine subspace:

y = argmin||Az — x|[, = (ATA)*ATx
z

Pa(x) = Ay = A(ATA) AT
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Examples

Projecting onto a unit Euclidean ball (¢2 ball):
X

Pe(x) = argmin||x — z|, = ———
llz]l,<1 2 max{1, [|x||,}
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Smooth and strongly convex constrained problems

mxin f(x)

st.xeC

o f: L-smooth and u-strongly convex

e C € RY: closed and convex
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Smooth and strongly convex constrained problems

Let f be L-smooth and p-strongly convex. If n; =n = ﬁ then PGD

obeys
k—1\"¢
e = %[, < ( ) Ixo = x°Il.

k+1

the same convergence rate as for the unconstrained case!
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Contraction Mapping (&4&HEST)

Contraction mapping in Euclidean space: If a function f : X — X
satisfies

1FO) = FW)lla <vlIx = yll2, Vxoy € X

for some v € (0,1), then we call f is a contraction mapping.

The contraction mapping f has a unique fixed point %, i.e., f(X) = X.
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Smooth and convex constrained problems

mxin f(x)

st.xeC

@ f: convex and L-smooth

e C € RY: closed and convex
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Smooth and convex constrained problems

Let f be convex and L-smooth. If n, =7 = % then PGD obeys

2L[|xg — x*|2
F(xe) — F(x") < ont <l

the same convergence rate as for the unconstrained case
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Convergence analysis

Recall the main steps when handling the unconstrained case:
@ Step 1: show improvement

1
f(xet1) < F(xe) — 5[ [V £(x;)||5 not true for constrained case

@ Step 2: by convexity,
* * 1
f(xer1) <F(XT) = (VF(xe), X" — x¢) — 5L IVF(x:)l3

1
Xt — X" — ZVf(xt)

* L *
:f(x>+2{||xt—x 13-

)

o Step 3: telescoping

1 = L
Fer) = () < 7 3 (Flwern) = ) < o =<1
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Convergence analysis

For the constrained case, we aims to replace Vf(x) in the unconstrained
case by

ge(x) = L{x ~ Pe(x — 1 VF(x)))

We have ge(x¢) = L(x¢ — X¢41)-
@ Step 1: descent guarantee

1
Flxer1) < F(xe) = 57 llge(xo)l3

o Step 2:

Flxern) <FO) — GBelxe). X" —xe) — o7 lge()l3

o Step 3: telescoping
f(xr) — f(x") <
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Outline

© Frank-Wolfe algorithm
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Frank-Wolfe Algorithm

Consider following problem:
min f(x)

X

st. Ax<b

Computing projection is very expensive!
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Frank-Wolfe Algorithm

Algorithm 1 Frank-Wolfe (a.k.a. conditional gradient) Algorithm
fort=1,2,... do
Y = arg ming o (VF(x¢), x) //direction finding
Xer1 = (1 — ne)xe + 0yt //line search and update

OptML ey S, )



Frank-Wolfe Algorithm

Algorithm 2 Frank-Wolfe (a.k.a. conditional gradient) Algorithm
fort=1,2,... do
ye = argmin o (VF(x¢), x) //direction finding
Xer1 = (1 — ne)Xe + 1eye //line search and update

@ main step: linearization of the objective function
@ appealing when linear optimization is much cheaper than projection

@ stepsize: 0 = ti—2
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Frank-Wolfe Algorithm

Let f be convex and L-smooth. If i = one has

2
t+27
2L D?
t+2

f(xe) — F(x") <
where D = sup, yec [|x — yll»

For compact constraint sets, Frank-Wolfe attains e-accuracy with O(%)
iterations.
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Summary

Table: Convergence Property of Projected GD

. convergence iteration
stepsize .
rate complexity
strongly convex 1 1\t 1
=1 0((1-1)") | O(r1og?
& smooth = (1-3) (rwlog )
convex & 1 1 1
<mooth =1 0 (%) 0 (¢)
Table: Convergence Property of FW
. convergence | iteration
stepsize .
rate complexity
convex & 1 1 1
smooth | Tt =t O (z) O (¢)
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