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Review: smooth and strongly convex
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Review: smooth and strongly convex

We say a differentiable function f is L-smooth if for all x,y we have

IVE(x) = VE()l2 < Lllx =yl
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Review: smooth and strongly convex
We say a differentiable function f is L-smooth if for all x,y we have
IVF(x) = VE(y)ll, < Llx =yl

We say a function f is p-strongly convex if the function

g(x) = £(x) - 5 [IxI

is convex for some p > 0.
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Review: smooth and strongly convex

We say a differentiable function f is L-smooth if for all x,y we have

IVE(x) = VE()l2 < Lllx =yl

We say a function f is p-strongly convex if the function
K 2
g(x) = 7(x) — & 3
is convex for some p > 0.

Let f be L-smooth and p-strongly convex. lts condition number is defined
as k& ;% and we have

pl < V2f(x) < LI
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Equivalent first-order characterizations of smoothness

Let £ : R < R be a convex and differentiable function. Then the
following properties are equivalent characterizations of L-smoothness of f:

Q |VF(x) = VF(y)ll2 < Llx—yll2, ¥ x,y € RY;
Q@ (VF(x)—Vf(y),x—y) < L|x—yl3 V x,y € RY
@ f(y) < f(x)+ (VF(x),y —x) +5[x —y[3, ¥ x,y € RY,
first-order Taylor expansion
Q f(y) = f(x) + (VF(x),y —x) + 5 [VF(x) = VF(y)[3, V x,y € RY;
Q@ (VF(x) = Vf(y),x—y) > 1[VF(x) = VF(y)l3, ¥V x,y € RY;
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Review: smooth and strongly convex

Let f : R « R be a convex and differentiable function. Then the

following properties are equivalent characterizations of p-strong convexity
of f:

Q [[VF(x) = VF(y)ll2 > plx —yll2, V x,y € RY;

Q@ (VF(x)—Vf(y),x—y) > ulx—yl3 Vx,yeR%

Q f(y) > f(x) + (VF(x),y —x) + 5lx —yII3, V x,y € RY;

Q f(y) < f(x) + (VF(x),y —x) + 5, I VF(x) = VF(y)[5, ¥ x,y € R;
Q (VF(x) = VF(y),x —y) < ;[VF(x) = VF(y)I5, ¥V x,y € RY;
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Review: gradient descent

Gradient Descent: Start with the initial point xg and computes

Xe41 = X¢ — N VE(X¢)
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Review: gradient descent

Gradient Descent: Start with the initial point xg and computes
Xty1 = Xt — N VF(X¢)

Let f be L-smooth and p-strongly convex. If we choose 7; = n = —2

p+Le
then GD obeys

k—1\"
o=l < (257) o= =l
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Review: gradient descent

Gradient Descent: Start with the initial point xg and computes
Xty1 = Xt — N VF(X¢)

Let f be L-smooth and p-strongly convex. If we choose n: =n = ﬁ
then GD obeys

k—1\"
o=l < (257) o= =l

Proof 1 (last week): use fundamental theorem of calculus

Proof 2: Use the following inequality

ul 1
(VF() = TAW)x =3 = 5 Ix =yl o+ S IV~ VB
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Convergence property

@ To achieve e-accuracy, i.e., ||[x; — x*||, < €, the necessary number of

iterations is
osllzs <12/ o (11051
Iog(ﬁ—ﬂ) €

iteration complexity

@ Dimension-free: The iteration complexity is independent of problem
size d if k does not depend on d.
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Convergence of f(x;) — f(x¥)

Let f be L-smooth and p-strongly convex. If ny =n = ﬁ then GD obeys

—1\¢
Ixe —x*[l, < = Ixo — X", -
2 Ku—f-]. 2

By smoothness and strong convexity, we know

k—1
k+1

ﬂm)fuwsH( )huawﬂf»
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Convergence of f(x;) — f(x¥)

Let f be L-smooth and pu-strongly convex. If n; =n = % then the outputs
of GD satisfies

fl) — £(7) < (1= 1) (o) = Fx))

which means the iteration complexity is also O (log ).
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Line search (X R)

In practice, one often performs line searches rather than adopting constant
stepsizes because:

e L may be unknown;

@ L may be too high.
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Line search (Z#R)

In practice, one often performs line searches rather than adopting constant
stepsizes because:

@ L may be unknown;

@ L may be too high.

Exact line search:

ne = argmin f(x; — nVF(x¢)).
1n=>0

Exact line search is usually not practical since the subproblem is hard to
solve.
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Backtracking line search ([EI#H%E14R)

f(xt - va(xt))

fx)

0 o

acceptable  r(x,) — anl|vf(x)lI2
f&xo) = nlvF&xII?

Armijo condition: for 0 < a < 1,

F(xe = nVF(xe)) < F(xe) = o] VF(xe)|3-
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Backtracking line search ([EI#H%E14R)

f(xt - va(xt))

fx)

0~ o
acceptable  f(x) — anl|vf (x|
fxp — 77||Vf(Xt)||2

Armijo condition: for 0 < a < 1,
f(xe =V (xe)) < F(xe) = anl|VF(xe)|3-

o f(x;) — an||Vf(x:)|3 lies above f(x; — nVf(x;)) for small i

@ ensures sufficient decrease of objective values
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Backtracking line search ([EI#H%E14R)

f(xe = nVf(x0)

fxo S

o
acceptable  f(x) — anl|vf(x)l2
f@x) = nlIvF oI

1: Initializen =1, 0< « <1/2,0< B < 1.
2: while f(x; —nVf(x¢)) > f(x:) — omHVf(xt)H% do
33 n<Pn
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Convergence of backtracking line search

Theorem (Boyd, Vandenberghe '04)

Let f be L-smooth and u-strongly convex. With backtracking line search,

() = £6) < (1 min {2ue, 2‘”f“})t(f(xo) ~ f(x))
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Summary

So far we have established linear convergence under strong convexity and
smoothness.

Is strong convexity necessary for linear convergence?
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Example: logistic regression

Suppose we obtain n independent binary samples

. 1
. { 1 with prob. Ten(maT)
i .
-1 with prob. m

where the a; and y; are the feature vector and the label of the i-th data
sample respectively, x is the model parameters.
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Example: logistic regression

The maximum likelihood estimation (MLE) is given by (after a little
manipulation)

1 o T
min f(x) = — log(1 + exp(—y;a; x
min £(x) n; g(1+ exp(—yia/ x))

-
2 _1 exp(—y;a; x) T X0
oV ( ) ZI 1 (14-exp(— y,-alTx))2a’a’. 0

= f is O-strongly convex
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Example: logistic regression

The maximum likelihood estimation (MLE) is given by (after a little
manipulation)

1 o T
min f(x) = — log(1 + exp(—y;a; x
min £(x) n; g(1+ exp(—yia/ x))

-
2 _1 exp(—y;a; x) T X0
oV ( ) ZI 1 (14-exp(— y,-alTx))2a’a’. 0

= f is O-strongly convex

@ Does it mean we no longer have linear convergence?
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Local strong convexity

xlllx = x*[l2 < [Ixo —x"[|2}

@ Suppose x; € By. Then follow previous analysis yields
-1
[xe41 = x*[lo < 557 [Ixe = x|
@ This means x;11 € By, so the above bound continues to hold for the
next iteration ...
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Local strong convexity

Let f be locally L-smooth and p-strongly convex such that
pl = V2f(x) < LI, Vx € By

where By = {x|||x — x*[|, < [[xo — x*||,}. Then GD obeys

—1\!
Ixe —x*[l, < = Ixo — X", -
2 /‘i—i-]. 2
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Local strong convexity

The local strong convexity parameter of the logistic regression example is
given by

1< —bia
inf Amin | — Z exp(—bia; ﬁ) 2aia,-T
{xlllx=x* [l ,<[Ixo—x* |} n < (1+ exp(—bja, x))

i=1

which is often strictly bounded away from 0.
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Polyak-Lojasiewicz condition

Recall that an equivalent condition of p-strongly convex is

F(x) < F(y) + (VF(y).x — y) + 21MHVf(x) ~ V()3 ¥y,
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Polyak-Lojasiewicz condition

Recall that an equivalent condition of p-strongly convex is
1
f(x) < fy) + (VF(y),x—y) + ZHW(X) — VI3, ¥xy.
If we choose y = x*, we get the Polyak-Lojasiewicz (PL) condition
N 1
f(x) = f(x") < ZHW(X)Hﬁ

where x* can be any minimum of f.

OptML e R Y



Polyak-Lojasiewicz condition

Recall that an equivalent condition of p-strongly convex is
1
f(x) < fy) + (VF(y),x—y) + ZHW(X) — VI3, ¥xy.
If we choose y = x*, we get the Polyak-Lojasiewicz (PL) condition
N 1
f(x) = f(x") < ZIIW(X)H%

where x* can be any minimum of f.

The PL condition guarantees that gradient grows fast as we move away
from the optimal objective value.
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Polyak-Lojasiewicz (PL) condition

PL condition: 1
f(x) — f(x*) < ZIIW(X)HE

@ does NOT imply the function is convex

16 _y=x2+3(sin x)2
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Polyak-Lojasiewicz (PL) condition
PL condition:

Flx) — F(x") < ;an(x)ué

@ does NOT imply the function is convex

@ does NOT imply the uniqueness of global minima

16 _y=x2+3(sin x)2
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Polyak-Lojasiewicz (PL) condition

PL condition: 1
f(x) — f(x*) < ZIIW(X)HE

@ does NOT imply the function is convex
@ does NOT imply the uniqueness of global minima

@ guarantees that every stationary point is a global minimum

16 _y:x2+3(sin x)2
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Convergence under PL condition

Suppose f is L-smooth and satisfies PL condition with parameter p. If
ne=mn= % then GD obeys

)~ £(7) < (1= 1) (£l - )

which means the iteration complexity is also O (f@log %)
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Example: Over-parameterized Linear Regression

Linear regression:
n

min f(x) = %Z(a?x — b))%

d
xeR i1

Over-parametrization: model dimension > sample size, i.e., (d > n).

o V2f(x)=>_"_,a;a;] is rank-deficient if d > n, thus f(x) is not
strongly convex

@ PL condition is met
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Example: Over-parameterized linear regression

Suppose A = [ay,...,a,]" € R™ has rank n, and that

Ne="1n= m. Then GD Obeys

. TV ¢
)~ 1) < (1 3700 ) (7tsa) = 7).

@ very mild assumption on A

@ while there are many global minima for this over-parameterized
problem, GD converges to a global min closest to initialization xg
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Dropping strong convexity

What happens if we completely drop (local) strong convexity?

We only suppose f(x) is smooth and convex.
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error)

Example: consider f(x) = 1/x (x > 0). GD iterates {x;} might never
converge to x* = 0o0. In comparison, f(x;) might approach f(x*) =0
rapidly.
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Convergence rate for convex and smooth problems

Let f be convex and L-smooth. If n; =n = % then GD obeys

2L[|xg — x*||2
Fxe) — F(x") < Hth il

o Without strong convexity, convergence is typically much slower than
linear convergence

e attains e-accuracy within O(2) iterations (vs O(log(1)) iterations for
linear convergence)
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Summary

. convergence iteration
stepsize .
rate complexity
strongly convex 1 1\t 1
=1 0((1-1)) | O(r10g?
& smooth = (1-3%) (1log )

locally strongly

convex & smooth | 1t~ T|0 <(1 - %)t) O(k log 1)
PL dition &
oty o(n-2r) | oewsd
convex &
smooth e = % 0 (%) 0 (%)

Table: Convergence Property of GD
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