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Review: smooth and strongly convex

We say a differentiable function f is L-smooth if for all x, y we have

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2 .

We say a function f is µ-strongly convex if the function

g(x) = f (x)− µ

2
∥x∥22

is convex for some µ > 0.

Let f be L-smooth and µ-strongly convex. Its condition number is defined
as κ ≜ L

µ and we have

µI ⪯ ∇2f (x) ⪯ LI.
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Equivalent first-order characterizations of smoothness

Let f : Rd ← R be a convex and differentiable function. Then the
following properties are equivalent characterizations of L-smoothness of f :

1 ∥∇f (x)−∇f (y)∥2 ≤ L∥x− y∥2, ∀ x, y ∈ Rd ;

2 ⟨∇f (x)−∇f (y), x− y⟩ ≤ L∥x− y∥22, ∀ x, y ∈ Rd ;

3 f (y) ≤ f (x) + ⟨∇f (x), y − x⟩︸ ︷︷ ︸
first-order Taylor expansion

+L
2∥x− y∥22, ∀ x, y ∈ Rd ;

4 f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1
2L∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;

5 ⟨∇f (x)−∇f (y), x− y⟩ ≥ 1
L∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;
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Review: gradient descent

Gradient Descent: Start with the initial point x0 and computes

xt+1 = xt − ηt∇f (xt)

Let f be L-smooth and µ-strongly convex. If we choose ηt = η = 2
µ+L ,

then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

Proof 1 (last week): use fundamental theorem of calculus

Proof 2: Use the following inequality

⟨∇f (x)−∇f (y), x− y⟩ ≥ µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f (x)−∇f (y)∥22.
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Convergence property

To achieve ϵ-accuracy, i.e., ∥xt − x∗∥2 ≤ ϵ, the necessary number of
iterations is

log(∥x0 − x∗∥2 /ϵ)
log(κ+1

κ−1)
= O

(
κ log

1

ϵ

)
︸ ︷︷ ︸

iteration complexity

.

Dimension-free: The iteration complexity is independent of problem
size d if κ does not depend on d .
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Convergence of f (xt)− f (x∗)

Let f be L-smooth and µ-strongly convex. If ηt = η = 2
µ+L , then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

By smoothness and strong convexity, we know

f (xt)− f (x∗) ≤ κ

(
κ− 1

κ+ 1

)2t

(f (x0)− f (x∗)).
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Convergence of f (xt)− f (x∗)

Let f be L-smooth and µ-strongly convex. If ηt = η = 1
L , then the outputs

of GD satisfies

f (xt)− f (x∗) ≤
(
1− 1

κ

)t

(f (x0)− f (x∗)),

which means the iteration complexity is also O
(
κ log 1

ϵ

)
.

Lecture 05 OptML November 5th, 2024 8 / 27



Line search (线搜索)

In practice, one often performs line searches rather than adopting constant
stepsizes because:

L may be unknown;

L may be too high.

Exact line search:

ηt = argmin
η≥0

f (xt − η∇f (xt)).

Exact line search is usually not practical since the subproblem is hard to
solve.
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Backtracking line search (回溯线搜索)

Armijo condition: for 0 < α < 1,

f (xt − η∇f (xt)) < f (xt)− αη∥∇f (xt)∥22.

f (xt)− αη∥∇f (xt)∥22 lies above f (xt − η∇f (xt)) for small η

ensures sufficient decrease of objective values
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Backtracking line search (回溯线搜索)

1: Initialize η = 1, 0 < α ≤ 1/2, 0 < β < 1.
2: while f (xt − η∇f (xt)) > f (xt)− αη∥∇f (xt)∥22 do
3: η ← βη
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Convergence of backtracking line search

Theorem (Boyd, Vandenberghe ’04)

Let f be L-smooth and µ-strongly convex. With backtracking line search,

f (xt)− f (x∗) ≤
(
1−min

{
2µα,

2αβµ

L

})t

(f (x0)− f (x∗))
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Summary

So far we have established linear convergence under strong convexity and
smoothness.

Is strong convexity necessary for linear convergence?
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Example: logistic regression

Suppose we obtain n independent binary samples

yi =

{
1 with prob. 1

1+exp(−a⊤i x)

−1 with prob. 1
1+exp(a⊤i x)

where the ai and yi are the feature vector and the label of the i-th data
sample respectively, x is the model parameters.
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Example: logistic regression

The maximum likelihood estimation (MLE) is given by (after a little
manipulation)

min
x∈Rd

f (x) =
1

n

n∑
i=1

log(1 + exp(−yia⊤i x))

∇2f (x) = 1
n

∑n
i=1

exp(−yia
⊤
i x)

(1+exp(−yia⊤i x))2
aia

⊤
i

x→∞−→ 0

⇒ f is 0-strongly convex

Does it mean we no longer have linear convergence?
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Local strong convexity

Suppose xt ∈ B0. Then follow previous analysis yields
∥xt+1 − x∗∥2 ≤

κ−1
κ+1 ∥xt − x∗∥2

This means xt+1 ∈ B0, so the above bound continues to hold for the
next iteration ...
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Local strong convexity

Let f be locally L-smooth and µ-strongly convex such that

µI ⪯ ∇2f (x) ⪯ LI, ∀x ∈ B0

where B0 = {x| ∥x− x∗∥2 ≤ ∥x0 − x∗∥2}. Then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .
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Local strong convexity

The local strong convexity parameter of the logistic regression example is
given by

inf
{x|∥x−x∗∥2≤∥x0−x∗∥2}

λmin

(
1

n

n∑
i=1

exp(−bia⊤i x)
(1 + exp(−bia⊤i x))2

aia
⊤
i

)

which is often strictly bounded away from 0.
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Polyak-Lojasiewicz condition

Recall that an equivalent condition of µ-strongly convex is

f (x) ≤ f (y) + ⟨∇f (y), x− y⟩+ 1

2µ
∥∇f (x)−∇f (y)∥22, ∀x, y.

If we choose y = x∗, we get the Polyak-Lojasiewicz (PL) condition

f (x)− f (x∗) ≤ 1

2µ
∥∇f (x)∥22.

where x∗ can be any minimum of f .

The PL condition guarantees that gradient grows fast as we move away
from the optimal objective value.
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Polyak-Lojasiewicz (PL) condition

PL condition:

f (x)− f (x∗) ≤ 1

2µ
∥∇f (x)∥22

does NOT imply the function is convex

does NOT imply the uniqueness of global minima

guarantees that every stationary point is a global minimum
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Convergence under PL condition

Suppose f is L-smooth and satisfies PL condition with parameter µ. If
ηt = η = 1

L , then GD obeys

f (xt)− f (x∗) ≤
(
1− 1

κ

)t

(f (x0)− f (x∗)),

which means the iteration complexity is also O
(
κ log 1

ϵ

)
.
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Example: Over-parameterized Linear Regression

Linear regression:

min
x∈Rd

f (x) =
1

2

n∑
i=1

(a⊤i x− bi )
2.

Over-parametrization: model dimension > sample size, i.e., (d > n).

∇2f (x) =
∑n

i=1 aia
⊤
i is rank-deficient if d > n, thus f (x) is not

strongly convex

PL condition is met
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Example: Over-parameterized linear regression

Suppose A = [a1, . . . , an]⊤ ∈ Rn×d has rank n, and that
ηt = η = 1

λmax(AA⊤)
. Then GD obeys

f (xt)− f (x∗) ≤
(
1− λmin(AA

⊤)

λmax(AA⊤)

)t

(f (x0)− f (x∗)).

very mild assumption on A

while there are many global minima for this over-parameterized
problem, GD converges to a global min closest to initialization x0
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Dropping strong convexity

What happens if we completely drop (local) strong convexity?

We only suppose f (x) is smooth and convex.
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error)

Example: consider f (x) = 1/x (x > 0). GD iterates {xt} might never
converge to x∗ =∞. In comparison, f (xt) might approach f (x∗) = 0
rapidly.
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Convergence rate for convex and smooth problems

Let f be convex and L-smooth. If ηt = η = 1
L , then GD obeys

f (xt)− f (x∗) ≤ 2L∥x0 − x∗∥2

t

Without strong convexity, convergence is typically much slower than
linear convergence

attains ϵ-accuracy within O(1ϵ ) iterations (vs O(log(1ϵ )) iterations for
linear convergence)
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Summary

stepsize
convergence

rate
iteration
complexity

strongly convex
& smooth

ηt =
1
L O

((
1− 1

κ

)t)
O(κ log 1

ϵ )

locally strongly
convex & smooth

ηt =
1
L O

((
1− 1

κ

)t)
O(κ log 1

ϵ )

PL condition &
smooth

ηt =
1
L O

((
1− 1

κ

)t)
O(κ log 1

ϵ )

convex &
smooth

ηt =
1
L O

(
1
t

)
O
(
1
ϵ

)
Table: Convergence Property of GD
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