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Differentiable unconstrained optimization

Suppose the objective function (or loss function) f is differentiable. The
unconstrained optimization problem is:

min
x

f (x)

s.t. x ∈ Rd
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Optimality condition (最优性条件)

Suppose f is differentiable and convex. A point x∗ is optimal if and only if

∇f (x∗) = 0.

Strict convex function has unique optimal solution.
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Iterative descent methods

Start with a point x0 and construct a sequence {xt} s.t.,

f (xt+1) < f (xt). t = 0, 1, . . .

We call d is a descent direction at x if

f ′(x;d) ≜ lim
t→0

f (x+ td)− f (x)

t︸ ︷︷ ︸
directional derivative

= ∇f (x)⊤d < 0.
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Iterative descent methods

Start with a point x0;

In each iteration, search in descent direction

xt+1 = xt + ηtdt

where dt is the descent direction at xt and ηt is the stepsize.
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How to find a descent direction?

By Cauchy-Schwarz inequality,

min
∥d∥2≤1

f ′(x;d) = min
∥d∥2≤1

∇f (x)⊤d = −∥∇f (x)∥2

f ′(x;d) achieve minimum when d = −∇f (x).
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Gradient descent (梯度下降法)

One of the most important descent methods: gradient descent

xt+1 = xt − ηt∇f (xt)

descent direction: dt = −∇f (xt)
traced to Augustin Louis Cauchy ’1847

First-order Taylor approximation: f (x) ≈ f (xt) + ⟨∇f (xt), x− xt⟩

Lecture 04 OptML October 29th, 2024 8 / 24



Outline

1 Unconstrained optimization

2 Quadratic minimization

3 Smoothness and strongly convex

Lecture 04 OptML October 29th, 2024 9 / 24



Quadratic minimization

We begin with the quadratic objective function:

min
x

f (x) =
1

2
x⊤Qx− b⊤x,

for some d × d symmetric matrix Q ≻ 0.

The gradient is ∇f (x) = Qx− b.

The unique optimal solution is x∗ = Q−1b.

λ1(Q)I ⪰ Q ⪰ λd(Q)I, where λ1(Q) and λd(Q) are largest and
smallest eigenvalues of Q respectively.
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How to find a good stepsize?

According to the GD update rule,

xt+1 − x∗ = xt − x∗ − ηt∇f (xt) = (I− ηtQ)(xt − x∗)

⇒ ∥xt+1 − x∗∥2 ≤ ∥I− ηtQ∥2∥xt − x∗∥2

We observe that

∥I− ηtQ∥2 = max{|1− ηtλ1(Q)|, |1− ηtλd(Q)|}︸ ︷︷ ︸
optimal choice is ηt =

2
λ1(Q)+λd (Q)

=
λ1(Q)− λd(Q)

λ1(Q) + λd(Q)
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Convergence for constant stepsize

If ηt = η = 2
λ1(Q)+λd (Q) , then

∥xt − x∗∥2 ≤
(
λ1(Q)− λd(Q)

λ1(Q) + λd(Q)

)t

∥x0 − x∗∥2.

The stepsize ηt = η = 2
λ1(Q)+λd (Q) relies on the eigenvalues of Q, which

requires preliminary experimentation.

Lecture 04 OptML October 29th, 2024 11 / 24



Outline

1 Unconstrained optimization

2 Quadratic minimization

3 Smoothness and strongly convex

Lecture 04 OptML October 29th, 2024 12 / 24



Generalization

Let’s now generalize quadratic minimization to a broader class of problems

min
x

f (x)

where
µI ⪯ ∇2f (x) ⪯ LI.
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Smoothness (光滑性)

We say that a function f : Rd → R is G -Lipschitz continuous if for all
x, y ∈ Rd , we have

|f (x)− f (y)| ≤ G ∥x− y∥2 .

We say a differentiable function f : Rd → R is L-smooth if it has
L-Lipschitz continuous gradient. That is, for all x, y ∈ Rd , we have

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2 .
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Smoothness

Which of following functions are smooth?

f (x) = x4;

f (x) = 1
2x

⊤Qx− b⊤x with Q ⪰ 0;
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Equivalent first-order characterizations of smoothness

Let f : Rd ← R be a convex and differentiable function. Then the
following properties are equivalent characterizations of L-smoothness of f :

1 ∥∇f (x)−∇f (y)∥2 ≤ L∥x− y∥2, ∀ x, y ∈ Rd ;

2 ⟨∇f (x)−∇f (y), x− y⟩ ≤ L∥x− y∥22, ∀ x, y ∈ Rd ;

3 f (y) ≤ f (x) + ⟨∇f (x), y − x⟩︸ ︷︷ ︸
first-order Taylor expansion

+L
2∥x− y∥22, ∀ x, y ∈ Rd ;

4 f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1
2L∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;

5 ⟨∇f (x)−∇f (y), x− y⟩ ≥ 1
L∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;

Which characterizations do not hold if f is not convex?
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Equivalent first-order characterizations of smoothness
(cont)

Let f : Rd ← R be a convex and differentiable function. Then the
following properties are equivalent characterizations of L-smoothness of f :

6 λf (x) + (1− λ)f (y) ≤ f (λx+ (1− λ)y) + L
2λ(1− λ)∥x− y∥2;

7 λf (x) + (1− λ)f (y) ≥ f (λx+ (1− λ)y) + λ(1−λ)
2L ∥∇f (x)−∇f (y)∥22.

bonus homework
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Equivalent second-order characterization of smoothness

We say a differentiable function f : Rd → R is L-smooth if

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2 .

Second-Order Characterization:
Let f : Rd ← R be a twice differentiable function. Then the following
property is an equivalent characterization of L-smoothness of f :

−LI ⪯ ∇2f (x) ⪯ LI.

Lecture 04 OptML October 29th, 2024 17 / 24



Strongly convexity (强凸性)

We say f is µ-strongly convex if the function

g(x) = f (x)− µ

2
∥x∥22

is convex for some µ > 0.
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Equivalent first-order characterizations of strong convexity

Let f : Rd ← R be a convex and differentiable function. Then the
following properties are equivalent characterizations of µ-strong convexity
of f :

1 ∥∇f (x)−∇f (y)∥2 ≥ µ∥x− y∥2, ∀ x, y ∈ Rd ;

2 ⟨∇f (x)−∇f (y), x− y⟩ ≥ µ∥x− y∥22, ∀ x, y ∈ Rd ;

3 f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ
2∥x− y∥22, ∀ x, y ∈ Rd ;

4 f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ 1
2µ∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;

5 ⟨∇f (x)−∇f (y), x− y⟩ ≤ 1
µ∥∇f (x)−∇f (y)∥

2
2, ∀ x, y ∈ Rd ;

Strongly convex functions are strictly convex.
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Equivalent second-order characterization of strongly
convexity

Second-Order Characterization:

Let f : Rd ← R be a twice differentiable function. Then the following
property is an equivalent characterization of µ-strongly convex of f :

∇2f (x) ⪰ µI.
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Strongly convex and smooth functions

Let f be L-smooth and µ-strongly convex. Then we have

µI ⪯ ∇2f (x) ⪯ LI.

Let κ ≜ L
µ be the condition number.
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Convergence rate of strongly convex and smooth problems

Theorem

Let f be L-smooth and µ-strongly convex. If ηt = η = 2
µ+L , then

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

Proof 1: Use fundamental theorem of calculus

∇f (xt)−∇f (x∗)︸ ︷︷ ︸
=0

=

(∫ 1

0
∇2f (x∗ + τ(xt − x∗))dτ

)
(xt − x∗).

Proof 2: Use the following inequality

⟨∇f (x)−∇f (y), x− y⟩ ≥ µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f (x)−∇f (y)∥22.
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Convergence rate of strongly convex and smooth problems

Let f be L-smooth and µ-strongly convex. If ηt = η = 2
µ+L , then

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

Iteration complexity: To achieve ϵ-accuracy, we require
log(∥x0−x∗∥2/ϵ)

log( κ+1
κ−1

)

number of iterations.
Dimension-free: The iteration complexity is independent of problem size d
if κ does not depend on d .
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Summary

Gradient descent

Smoothness and strongly convex

First-order characterizations
Second-order characterizations

Convergence rate of GD for strongly convex and smooth problems
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