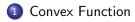
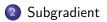
Optimization for Machine Learning 机器学习中的优化方法

陈 程

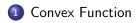
华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn





Outline



3 / 25

Convex Function (凸函数)

• A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(heta \mathbf{x} + (1 - heta) \mathbf{y}) \leq heta f(\mathbf{x}) + (1 - heta) f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$, $\theta \in [0, 1]$.

• A function f is concave if -f is convex.

Strict convex function:

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) < \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}), \ t \in (0, 1), \ \mathbf{x} \neq \mathbf{y}$$

3/25

- exponential: e^{ax} .
- power: x^{α} ($x > 0, \alpha \ge 1$).
- logarithm: $\log_a x (0 < a < 1)$.
- negative entropy: $x \log x$
- affine: $\mathbf{a}^{\top}\mathbf{x} + b$.
- norms: $\|\mathbf{x}\|$.

First-order condition

Suppose f is differentiable and has convex domain, then f is convex if and only if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle
abla f(\mathbf{x}), \mathbf{y} - \mathbf{x}
angle$$

holds for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$.

$$f(y)$$

$$f(x) + \nabla f(x)^{T}(y - x)$$

$$(x, f(x))$$

5/25

If $\nabla f(\mathbf{x}) = 0$, then for all $\mathbf{y} \in \text{dom } f$, $f(\mathbf{y}) \ge f(\mathbf{x})$, i.e., \mathbf{x} is a global minimizer of f.

Strict convex:

$$f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \text{ if } \mathbf{y} \neq \mathbf{x}.$$

Suppose f is twice differentiable and has convex domain, then f is convex if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}.$$

Strict convex:

 $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}.$

- least-square: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- quadratic-over-linear: $f(x, y) = x^2/y$, y > 0
- log-sum-exp: $f(\mathbf{x}) = \log \sum_{i=1}^{n} \exp(x_i)$

Sublevel set (水平子集)

The α -sublevel set of a function f is defined as

```
\mathcal{C}_{\alpha} = \{ \mathbf{x} \in \text{dom } f | f(\mathbf{x}) \leq \alpha \}
```

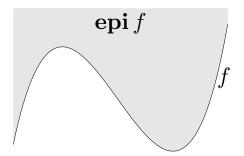
Sublevel sets of convex functions are convex for any value α .

The converse is not true: a function can have all its sublevel sets convex, but not be a convex function.

Epigraph (上方图)

The epigraph of a function $f:\mathcal{S} \to \mathbb{R}$ is defined as the set

$$\operatorname{epi} f \triangleq \{(\mathbf{x}, u) \in \mathcal{S} \times \mathbb{R} : f(\mathbf{x}) \leq u\}.$$



Theorem. A function *f* is convex if and only if its epigraph is a convex set.

Lecture 03	OptML	October 15, 2024	10 / 25

Jensen Inequality:

$$f(\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k) \leq \theta_1 f(\mathbf{x}_1) + \dots + \theta_k f(\mathbf{x}_k), \ \theta_1 + \dots + \theta_k = 1$$

can be proved by induction

Extensions:

$$f\left(\int_{S} p(\mathbf{x})\mathbf{x} \mathrm{d}\,\mathbf{x}\right) \leq \int_{S} f(\mathbf{x})p(\mathbf{x})\mathrm{d}\,\mathbf{x}$$
$$f(\mathbb{E}[\mathbf{x}]) \leq \mathbb{E}[f(\mathbf{x})], \text{ for any random variable } \mathbf{x}$$

Nonnegative weighted sums:

A nonnegative weighted sum of convex functions

$$f = w_1 f_1 + \cdots + w_m f_m$$

is convex.

Composition with affine function:

If f is convex, then $f(\mathbf{Ax} + \mathbf{b})$ is convex.

Pointwise maximum:

If f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.

Example:

• piecewise-linear function: $f(x) = \max_{i=1,...,m} (\mathbf{a}_i^\top \mathbf{x} + \mathbf{b}_i)$ is convex

• sum of r largest components of $\mathbf{x} \in \mathbb{R}^n$:

$$f(\mathbf{x}) = x_{[1]} + \cdots + x_{[r]}$$

is convex. ($\mathbf{x}_{[i]}$ is *i*-th largest component of \mathbf{x})

Operations that preserve convexity

Pointwise supremum:

If f(x, y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex.

Example:

• distance to farthest point in a set C:

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|$$

Minimization:

If f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

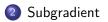
is convex.

Example: distance to a set: dist(\mathbf{x} , S) = inf_{$\mathbf{y} \in S$} $||\mathbf{x} - \mathbf{y}||$ is convex if S is convex.

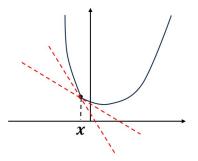
Theorem. Let f be a convex function on a convex set C. Suppose \mathbf{x}^* is a local minima of f, i.e., there exist some $\delta > 0$ such that any $\bar{\mathbf{x}} \in \mathcal{B}_{\delta} \cap C$ holds $f(\mathbf{x}^*) \leq f(\bar{\mathbf{x}})$. Then \mathbf{x}^* is a global solution of

 $\min_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x}).$

Outline



Subgradient (次梯度)



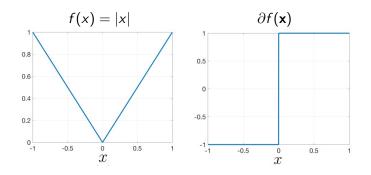
We say \mathbf{g} is a subgradient of f at the point \mathbf{x} if

$$f(\mathbf{y}) \geq \underbrace{f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle}_{\text{a linear under-estimate of } f} \quad \forall \mathbf{y} \in \text{dom } f$$

The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} , denoted by $\partial f(\mathbf{x})$.

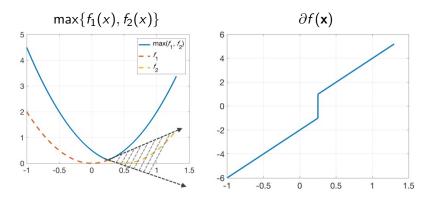
		re	

Example: f(x) = |x|



$$f(x) = |x| \qquad \partial f(\mathbf{x}) = \begin{cases} \{-1\}, & \text{if } x < 0\\ [-1,1], & \text{if } x = 0\\ \{1\}, & \text{if } x > 0 \end{cases}$$

Example: $\max\{f_1(x), f_2(x)\}$



 $f(x) = \max{f_1(x), f_2(x)}$ where $f_1(x)$ and $f_2(x)$ are differentiable.

$$\partial f(\mathbf{x}) = \begin{cases} \{f_1'(x)\}, & \text{if } f_1(x) > f_2(x) \\ [f_1'(x), f_2'(x)], & \text{if } f_1(x) = f_2(x) \\ \{f_2'(x)\}, & \text{if } f_1(x) < f_2(x) \end{cases}$$

If a function is differentiable, the only subgradient at each point is the gradient, i.e.,

 $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$

Basic rules of subgradient

• scaling:
$$\partial(\alpha f) = \alpha \partial f$$
, for $\alpha > 0$

• summation:
$$\partial(f_1 + f_2) = \partial f_1 + \partial f_2$$

Example: Compute the subdifferential of ℓ_1 norm

$$f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i|.$$

• chain rule: suppose f is convex, and g is differentiable, nondecreasing, and convex. Let $h(\mathbf{x}) = g(f(\mathbf{x}))$, then

$$\partial h(\mathbf{x}) = g'(f(\mathbf{x}))\partial f(\mathbf{x})$$

• Suppose f is convex, and let $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then

$$\partial h(\mathbf{x}) = \mathbf{A}^{\top} \partial f(\mathbf{A}\mathbf{x} + \mathbf{b})$$

Example: Find a subgradient of $||\mathbf{A}\mathbf{x} + \mathbf{b}||_1$.

Basic rules of subgradient (cont.)

• pointwise maximum: if $f(\mathbf{x}) = \max_{1 \le i \le k} f_i(\mathbf{x})$, then

$$\partial f(\mathbf{x}) = \operatorname{conv}\left\{\bigcup\{\partial f_i(\mathbf{x})|f_i(\mathbf{x}) = f(\mathbf{x})\}\right\}$$

• pointwise supremum: if $f(\mathbf{x}) = \sup_{\alpha \in \mathcal{F}} f_{\alpha}(\mathbf{x})$, then

$$\partial f(\mathbf{x}) = \operatorname{closure}\left(\operatorname{conv}\left\{\bigcup\{\partial f_{\alpha}(\mathbf{x})|f_{\alpha}(\mathbf{x}) = f(\mathbf{x})\}\right\}\right)$$

Example: Find subgradients of following functions:

$$f(\mathbf{x}) = \max_{1 \le i \le k} \{ \mathbf{a}_i^\top \mathbf{x} + b_i \}$$
$$f(\mathbf{x}) = \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le d} |x_i|$$

A function f is convex if and only if dom f is convex and $\partial f(\mathbf{x}) \neq \emptyset$ for all $\mathbf{x} \in (\text{dom } f)^{\circ}$.

Summary

convex function

- definition
- first-order condition, second-order condition
- sublevel set, epigraph
- Jensen inequality
- operations that preserve convexity

subgradient

- definition
- basic properties