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Convex Function (凸函数)

A function f : Rn → R is convex if dom f is a convex set and

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x, y ∈ dom f , θ ∈ [0, 1].

A function f is concave if −f is convex.

Strict convex function:

f (θx+ (1− θ)y)<θf (x) + (1− θ)f (y), t ∈ (0, 1), x ̸= y

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2
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Examples

exponential: eax .

power: xα (x > 0, α ≥ 1).

logarithm: loga x (0 < a < 1).

negative entropy: x log x

affine: a⊤x+ b.

norms: ∥x∥.
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First-order condition

Suppose f is differentiable and has convex domain, then f is convex if and
only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩

holds for all x, y ∈ dom f .

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7
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First-order condition

If ∇f (x) = 0, then for all y ∈ dom f , f (y) ≥ f (x), i.e., x is a global
minimizer of f .

Strict convex:

f (y) > f (x) + ⟨∇f (x), y − x⟩, if y ̸= x.
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Second-order condition

Suppose f is twice differentiable and has convex domain, then f is convex
if and only if

∇2f (x) ⪰ 0.

Strict convex:
∇2f (x) ≻ 0.
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Examples

least-square: f (x) = ∥Ax− b∥22
quadratic-over-linear: f (x , y) = x2/y , y > 0

log-sum-exp: f (x) = log
∑n

i=1 exp(xi )
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Sublevel set（水平子集）

The α-sublevel set of a function f is defined as

Cα = {x ∈ dom f |f (x) ≤ α}

Sublevel sets of convex functions are convex for any value α.

The converse is not true: a function can have all its sublevel sets convex,
but not be a convex function.
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Epigraph (上方图)

The epigraph of a function f : S → R is defined as the set

epi f ≜ {(x, u) ∈ S × R : f (x) ≤ u}.

epi f

f

Theorem. A function f is convex if and only if its epigraph is a convex set.
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Jensen inequality

Jensen Inequality:

f (θ1x1 + · · ·+ θkxk) ≤ θ1f (x1) + · · ·+ θk f (xk), θ1 + . . . θk = 1

can be proved by induction

Extensions:

f

(∫

S
p(x)xd x

)
≤

∫

S
f (x)p(x)d x

f (E[x]) ≤ E[f (x)], for any random variable x
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Operations that preserve convexity

Nonnegative weighted sums:
A nonnegative weighted sum of convex functions

f = w1f1 + · · ·+ wmfm

is convex.

Composition with affine function:
If f is convex, then f (Ax+ b) is convex.
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Operations that preserve convexity

Pointwise maximum:
If f1, . . . , fm are convex, then f (x) = max{f1(x), . . . , fm(x)} is convex.

Example:

piecewise-linear function: f (x) = maxi=1,...,m(a
⊤
i x+ bi ) is convex

sum of r largest components of x ∈ Rn:

f (x) = x[1] + · · ·+ x[r ]

is convex. ( x[i ] is i-th largest component of x)
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Operations that preserve convexity

Pointwise supremum:
If f (x , y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f (x , y)

is convex.

Example:

distance to farthest point in a set C:

f (x) = sup
y∈C

∥x− y∥
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Operations that preserve convexity

Minimization:
If f (x , y) is convex in (x , y) and C is a convex set, then

g(x) = inf
y∈C

f (x , y)

is convex.

Example: distance to a set: dist(x,S) = infy∈S ∥x− y∥ is convex if S is
convex.
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Convex optimization

Theorem. Let f be a convex function on a convex set C. Suppose x∗ is a
local minima of f , i.e., there exist some δ > 0 such that any x̄ ∈ Bδ ∩ C
holds f (x∗) ≤ f (x̄). Then x∗ is a global solution of

min
x∈C

f (x).
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Subgradient (次梯度)

We say g is a subgradient of f at the point x if

f (y) ≥ f (x) + ⟨g, y − x⟩,︸ ︷︷ ︸
a linear under-estimate of f

∀y ∈ dom f

The set of all subgradients of f at x is called the subdifferential of f at x,
denoted by ∂f (x).
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Example: f (x) = |x |

f (x) = |x | ∂f (x)

f (x) = |x | ∂f (x) =





{−1}, if x < 0
[−1, 1], if x = 0
{1}, if x > 0
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Example: max{f1(x), f2(x)}

max{f1(x), f2(x)} ∂f (x)

f (x) = max{f1(x), f2(x)} where f1(x) and f2(x) are differentiable.

∂f (x) =





{f ′1(x)}, if f1(x) > f2(x)
[f ′1(x), f

′
2(x)], if f1(x) = f2(x)

{f ′2(x)}, if f1(x) < f2(x)
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Subgradient of differentiable functions

If a function is differentiable, the only subgradient at each point is the
gradient, i.e.,

∂f (x) = {∇f (x)}.
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Basic rules of subgradient

scaling: ∂(αf ) = α∂f , for α > 0

summation: ∂(f1 + f2) = ∂f1 + ∂f2

Example: Compute the subdifferential of ℓ1 norm

f (x) = ∥x∥1 =
d∑

i=1

|xi |.
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Basic rules of subgradient (cont.)

chain rule: suppose f is convex, and g is differentiable,
nondecreasing, and convex. Let h(x) = g(f (x)), then

∂h(x) = g ′(f (x))∂f (x)

Suppose f is convex, and let h(x) = f (Ax+ b). Then

∂h(x) = A⊤∂f (Ax+ b)

Example: Find a subgradient of ∥Ax+ b∥1.
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Basic rules of subgradient (cont.)

pointwise maximum: if f (x) = max1≤i≤k fi (x), then

∂f (x) = conv
{⋃

{∂fi (x)|fi (x) = f (x)}
}

pointwise supremum: if f (x) = supα∈F fα(x), then

∂f (x) = closure
(
conv

{⋃
{∂fα(x)|fα(x) = f (x)}

})

Example: Find subgradients of following functions:

f (x) = max
1≤i≤k

{a⊤i x+ bi}

f (x) = ∥x∥∞ = max
1≤i≤d

|xi |
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Subgradient characterization of convexity

A function f is convex if and only if dom f is convex and ∂f (x) ̸= ∅ for all
x ∈ (dom f )◦.
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Summary

convex function
definition
first-order condition, second-order condition
sublevel set, epigraph
Jensen inequality
operations that preserve convexity

subgradient
definition
basic properties
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