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Topology in Euclidean space

A subset S of Rn is called open, if for every x ∈ S there exists δ > 0
such that the ball Bδ(x) = {y : ∥y − x∥2 ≤ δ} is included in S.
Example: {x |a < x < b}, {x|x > 0}, {x| ∥x− a∥ < 1}.
A subset C of Rn is called closed, if its complement Cc = Rn\C is
open.
Example: {x |a ≤ x ≤ b}, {x|x ≥ 0}, {x| ∥x− a∥ ≤ 1}.
A subset C of Rn is called bounded, if there exists r > 0 such that
∥x∥2 < r for all x ∈ C.
Example: {x |a ≤ x < b}, {x|1 > x ≥ 0}, {x| ∥x− a∥ < 1}.
A subset C of Rn is called compact, if it is both bounded and closed.
Example: {x |a ≤ x ≤ b}, {x|1 ≥ x ≥ 0}, {x| ∥x− a∥ ≤ 1}.
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Topology in Euclidean space

1 The interior of C ∈ Rn is defined as

C◦ = {y : there exist ε > 0 such that Bε(y) ⊂ C}

2 The closure of C ∈ Rn is defined as

C = Rn\(Rn\C)◦.

3 The boundary of C ∈ Rn is defined as C\C◦.
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Derivative (导数)

Suppose f : Rn → Rm and x ∈ (dom f )◦. The derivative at x is

Df (x) =


∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

. . .
...

∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 ∈ Rm×n.

This matrix is also called Jacobian matrix.
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Gradient (梯度)

When f is real-valued, i.e., f : Rn → R, the gradient of f is:

∇f (x) = Df (x)⊤ =


∂f (x)

∂x1
...

∂f (x)

∂xn

 ∈ Rn×1.
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Gradient of matrix functions

Suppose that f : Rm×n → R. Then the gradient of f with respect to X is

∇f (X) =
∂f

∂X
=


∂f (X)

∂x11
· · · ∂f (X)

∂x1n
...

. . .
...

∂f (X)

∂xm1
· · · ∂f (X)

∂xmn

 ∈ Rm×n.

Example:
f (X) = ∥X∥2F
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Examples

1 For a, x ∈ Rn, we have
∂ a⊤x

∂ x
= a.

2 For A,X ∈ Rm×n, we have
∂ tr(A⊤X)

∂ X
= A.

3 For A ∈ Rn×n and x ∈ Rn, we have
∂ x⊤Ax

∂ x
= (A+ A⊤)x.

If A is symmetric, we have
∂ x⊤Ax

∂ x
= 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Chain rules

Suppose f : Rn → Rm is differentiable at x ∈ dom f and g : Rm → Rp is
differentiable at f (x) ∈ (dom g)◦. Define the composition h : Rn → Rp by
h(z) = g(f (z)). Then h is is differentiable at x and

Dh(x) = D(g(f (x)))D(f (x)).

Examples:

Suppose f : Rn → R, g : R → R and h(x) = g(f (x)). Then

∇h(x) = g ′(f (x))∇f (x).

Suppose f : Rn → R, A ∈ Rn×p and b ∈ Rn. Define h : Rp → R as
h(x) = f (Ax+ b). Then,

∇h(x) = A⊤∇f (Ax+ b).
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Gradient of logistic regression

What is the gradient of the following loss function?

f (x) = log
m∑
i=1

exp(a⊤i x+ bi ) (1)
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The Hessian matrix

Suppose that f : Rn → R is a smooth function that takes as input a
matrix x ∈ Rn and returns a real value. Then the Hessian matrix with
respect to x, written as ∇2f (x), which is defined as

∇2f (x) =


∂2f (x)

∂x1∂x1
· · · ∂2f (x)

∂x1∂xn
...

. . .
...

∂2f (x)

∂xn∂x1
· · · ∂2f (x)

∂xn∂xn

 ∈ Rn×n.

Taylor’s expansion for multivariable function f : Rn → R

f (x) ≈ f (a) +∇f (a)⊤(x− a) +
1

2
(x− a)⊤∇2f (a)(x− a)
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Chain rules for second derivative

Suppose f : Rn → R, g : R → R and h(x) = g(f (x)). Then

∇2h(x) = g ′(f (x))∇2f (x) + g ′′(f (x))∇f (x)∇f (x)⊤.

Suppose f : Rn → R, A ∈ Rn×p and b ∈ Rn. Define h : Rp → R as
h(x) = f (Ax+ b). Then,

∇2h(x) = A⊤∇2f (Ax+ b)A.

Bonus homework: Compute the Hessian matrix of loss function (1).
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Lines and Line Segments (直线与线段)

line through x1 and x2: all points

x = θx1 + (1− θ)x2, θ ∈ R.

line segment between x1 and x2: all points

x = θx1 + (1− θ)x2, 0 ≤ θ ≤ 1.
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Convex Sets (凸集)

A set S ⊆ Rn is convex if the line segment between any two points of S
lies in S, i.e., if for any x, y ∈ S and θ ∈ [0, 1], we have

θx+ (1− θ)y ∈ S.

Every two points can see each other.
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Properties of Convex Sets

If S is a convex set, then kS = {ks|k ∈ R, s ∈ S} is convex.

If S and T are convex sets, then S + T = {s+ t|s ∈ S, t ∈ T } is
convex.

If S and T are convex sets, then S × T = {(s, t)|s ∈ S, t ∈ T } is
convex.

If S and T are convex sets, then S ∩ T is convex.
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Convex Combination (凸组合)

Convex combination of x1, . . . , xk : any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0.

If x1, . . . , xk belong to a convex set S, then their convex combination x
also belongs to S.
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Convex Hull (凸包)

Convex hull convS: set of all convex combinations of points in S.

convS = {θ1x1+ · · ·+ θkxk |xi ∈ S, θi ≥ 0, i = 1, . . . , k , θ1+ · · ·+ θk = 1}.

Example: convex hull of {0, 1} is [0, 1].
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Affine Sets (仿射集)

A set is called affine set if it contains the line through any two distinct
points in the set.

Example: solution set of linear equations {x|Ax = b}.
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Cones (锥)

A set C is called a cone if for every x ∈ C and θ > 0 we have θx ∈ C.
A set C is called a convex cone if it is convex and a cone, which means
that for any x1, x2 ∈ C and θ1, θ2 > 0, we have

θ1x1 + θ2x2 ∈ C.
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Hyperplanes and Halfspaces (超平面与半平面)

Hyperplane: set of the form {x|a⊤x = b} (a ̸= 0).

Halfplane: set of the form {x|a⊤x ≤ b} (a ̸= 0).

Hyperplane is affine set.
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Norm Balls (范数球)

Norm ball with center xc and radius r : {x|∥x− xc∥ ≤ r}.
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Norm Cones (范数锥)

Norm cone: {(x, t)|∥x∥ ≤ t}.
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Operations that preserve convexity (保凸运算)

Affine functions (仿射函数).

Suppose S is convex and f : Rn → Rm is an affine function:

f (x) = Ax+ b.

Then the image of S under f:

f (S) = {f (x)|x ∈ S}

is convex. The inverse image:

f −1(S) = {x ∈ Rn|f (x) ∈ S}

is convex.
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Operations that preserve convexity (保凸运算)

Intersection (取交集).

The intersection of (any number of) convex sets is convex, i.e., if Sα is
convex for any α ∈ A, then ∩α∈ASα is convex.

A closed convex set S is the intersection of all halfspaces contain it:

S =
⋂

{H|H is halfspace,S ⊆ H}
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Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists a ̸= 0 and b s.t.

a⊤x ≤ b for x ∈ C, a⊤x ≥ b for x ∈ D.
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Hyperplane Separation Theorem
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Strict Separation Theorem

Suppose C and D are nonempty disjoint convex sets. If C is closed and D
is compact, there exists a ̸= 0 and b s.t.

a⊤x<b for x ∈ C, a⊤x>b for x ∈ D.

Example: a point and a closed convex set.
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Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point x0:

{a⊤x = a⊤x0}

where a ̸= 0 and a⊤x ≤ a⊤x0 for all x ∈ C.

Supporting hyperplane theorem: if C is convex, then there exists a
supporting hyperplane at every boundary point of C.
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