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Topology in Euclidean space

@ A subset S of R is called open, if for every x € S there exists 6 > 0
such that the ball Bs(x) = {y : |ly — x|[; < d} is included in S.
Example: {x]|a < x < b}, {x|x > 0}, {x|[x —a| < 1}.

@ A subset C of R" is called closed, if its complement C¢ = R"\C is
open.

Example: {x|a < x < b}, {x|x > 0}, {x|||x —a|| < 1}.

@ A subset C of R" is called bounded, if there exists r > 0 such that
lIx||, < r forall x € C.

Example: {x|a < x < b}, {x|1 > x >0}, {x|||x —a]| < 1}.

@ A subset C of R” is called compact, if it is both bounded and closed.
Example: {x|a < x < b}, {x|1 > x>0}, {x|||x —a| <1}.
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Topology in Euclidean space

@ The interior of C € R" is defined as
C° = {y : there exist ¢ > 0 such that B.(y) C C}
@ The closure of C € R" is defined as
C =R"\(R"\C)°.

© The boundary of C € R” is defined as C\C°.
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Derivative (%Y%)

Suppose f : R” — R™ and x € (dom f)°. The derivative at x is

OR0) | OAM)]
Oxy OXn
Df(x) = : : € R™X",
Ofm(x) o Ofm(x)
L Ox1 Ox, |

This matrix is also called Jacobian matrix.
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Gradient (¥6/%)

When f is real-valued, i.e., f : R" — R, the gradient of f is:

[Of(x)7]
oxq
Vf(x)=Df(x)" = | i | eR™,
of (x)
L Ox,
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Gradient of matrix functions

Suppose that  : R™*" — R. Then the gradient of f with respect to X is

FOf (X) OF(X)T
of Ox11 OX1n
)= = | ¢ i | ermxn,
VI(X) = 5% =
Of (X) Of (X)
L 8Xml 8an J
Example:

F(X) = X7
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Examples

aTx

@ For a,x € R", we have =a.

X
Otr(ATX)

For A, X € R™*n h
@ For A, X ¢ , we have 5%

=A.

TAx

0
© For A € R™" and x € R”, we have X
T

=(A+A")x

X

A
X _ 2Ax.

ox

If A is symmetric, we have

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Chain rules

Suppose f : R" — R is differentiable at x € dom f and g : R™ — RP is
differentiable at f(x) € (dom g)°. Define the composition h: R" — RP by

h(z) = g(f(z)). Then h is is differentiable at x and

Examples:
@ Suppose f : R" - R, g : R — R and h(x) = g(f(x)). Then
Vh(x) = g'(f(x))VF(x).

@ Suppose f : R" - R, A € R"P and b € R". Define h: R? — R as
h(x) = f(Ax + b). Then,

Vh(x) = ATVF(Ax + b).
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Gradient of logistic regression

What is the gradient of the following loss function?

f(x) = log Z exp(a; x + b;) (1)
i=1
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The Hessian matrix

Suppose that 7 : R” — R is a smooth function that takes as input a
matrix x € R” and returns a real value. Then the Hessian matrix with
respect to x, written as V2£(x), which is defined as

_82f(x) 82f(x)_
8X1(9X1 o axlax,,
Vi(x)=| L e R
0?f(x) 0f(x)
| OxnOx1 o 0xn0xp |

Taylor's expansion for multivariable function f : R” — R

f(x) ~ f(a) + Vf(a)T(x —a)+ %(x — a)Tvzf(a)(x —a)
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Chain rules for second derivative

@ Suppose f : R” - R, g : R — R and h(x) = g(f(x)). Then
V2h(x) = g'(f(x))V?F(x) + &"(f(x)) VI (x)VF(x) .

@ Suppose f : R" - R, A € R"™P and b € R". Define h: R” - R as
h(x) = f(Ax + b). Then,
V2h(x) = ATV2f(Ax + b)A.

Bonus homework: Compute the Hessian matrix of loss function (1).
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Lines and Line Segments (BE.45 %5 Ex)

line through x; and x»: all points
x=0x1+(1—0)x2, 6€R.
line segment between x; and x»: all points

x=0x1+(1—-60)x2, 0<6<1.

OptML YTy



Convex Sets (I'1%)

A set S C R” is convex if the line segment between any two points of S
lies in S, i.e., if for any x,y € S and 6 € [0, 1], we have

Ox + (1 — )y € S.

]
I

Every two points can see each other.
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Properties of Convex Sets

o If S is a convex set, then kS = {ks|k € R,s € S} is convex.

o If S and T are convex sets, then S+ T ={s+tlseS,teT}is
convex.

o If S and T are convex sets, then S X T = {(s,t)[s€ S,t € T} is
convex.

o If S and 7T are convex sets, then SN T is convex.
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Convex Combination (M4 &)

Convex combination of xi,...,x,: any point x of the form
X = 01x1 + Ooxo + - - - + O

with 01+-~-+9k:1, 9,20

If x1,...,Xxx belong to a convex set S, then their convex combination x
also belongs to S.
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Convex Hull (I'46)

Convex hull convS: set of all convex combinations of points in S.
convS = {91x1—|—~--—|—9kxk\x,- €85,0;>0,i=1,...,k,01+---+0, = 1}.

Example: convex hull of {0,1} is [0, 1].

& G
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Affine Sets (175148)

A set is called affine set if it contains the line through any two distinct
points in the set.

Example: solution set of linear equations {x|Ax = b}.
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Cones ()

A set C is called a cone if for every x € C and € > 0 we have 6x € C.
A set C is called a convex cone if it is convex and a cone, which means
that for any x1,x, € C and 61,65 > 0, we have

01x1 + 0% € C.

x1

T2
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Hyperplanes and Halfspaces (-1 5 - F )

Hyperplane: set of the form {x|]a’x = b} (a # 0).

Halfplane: set of the form {x|a’x < b} (a # 0).

/a
a’x>b

)

a’z <b

Hyperplane is affine set.
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Norm Balls (YE£{EK)

Norm ball with center x. and radius r: {x|||x — x| < r}.

p=0o0 p=2 p=1
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Norm Cones (TEELHE)

Norm cone: {(x,t)|||x| < t}.
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Operations that preserve convexity (PRIIZH )

Affine functions (/751 5K%%).
Suppose S is convex and f : R” — R™ is an affine function:
f(x) = Ax+b.
Then the image of S under f:
f(S8) = {f(x)lx € S}
is convex. The inverse image:
fHS) = {x e R"|f(x) € S}

is convex.
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Operations that preserve convexity (PRIIZH )

Intersection (HUZZ%E).

The intersection of (any number of) convex sets is convex, i.e., if S, is
convex for any o € A, then Nyec S, is convex.

A closed convex set S is the intersection of all halfspaces contain it:

S= ﬂ{’HH—[ is halfspace, S C H}
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Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists a = 0 and b s.t.

aTxgbforxec, a' x> bforxeD.

~

a'x>b afyr < b
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Hyperplane Separation Theorem
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Strict Separation Theorem

Suppose C and D are nonempty disjoint convex sets. If C is closed and D
is compact, there exists a # 0 and b s.t.

a'x<bforxeC, a'x>bforxeD.

Example: a point and a closed convex set.
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Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point xq:
{a'x=a"xo}

where a# 0 and a'x < a'xq for all x € C.

N
Iy

Supporting hyperplane theorem: if C is convex, then there exists a
supporting hyperplane at every boundary point of C.
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