Optimization for Machine Learning 机器学习中的优化方法

^陈 程

^华东师范大^学 ^软件工程学^院

chchen@sei.ecnu.edu.cn

Topology in Euclidean space

- A subset $\mathcal S$ of $\mathbb R^n$ is called **open**, if for every $\mathbf x\in\mathcal S$ there exists $\delta>0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = {\mathbf{y} : ||\mathbf{y} - \mathbf{x}||_2 < \delta}$ is included in S. Example: $\{x | a < x < b\}$, $\{x | x > 0\}$, $\{x | ||x - a|| < 1\}$.
- A subset $\mathcal C$ of $\mathbb R^n$ is called **closed**, if its complement $\mathcal C^c=\mathbb R^n\backslash\mathcal C$ is open.

Example: $\{x | a \le x \le b\}$, $\{x | x > 0\}$, $\{x | ||x - a|| \le 1\}$.

- A subset C of \mathbb{R}^n is called **bounded**, if there exists $r > 0$ such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in \mathcal{C}$. Example: $\{x | a \le x \le b\}$, $\{x | 1 > x > 0\}$, $\{x | ||x - a|| < 1\}$.
- A subset $\mathcal C$ of $\mathbb R^n$ is called compact, if it is both bounded and closed. Example: $\{x|a \le x \le b\}$, $\{x|1 \ge x \ge 0\}$, $\{x| ||x - a|| \le 1\}$.

1 The interior of $C \in \mathbb{R}^n$ is defined as

 $\mathcal{C}^{\circ} = \{\mathbf{y}: \mathsf{there}\; \mathsf{exist}\; \varepsilon > 0 \; \mathsf{such}\; \mathsf{that}\; \mathcal{B}_{\varepsilon}(\mathbf{y}) \subset \mathcal{C}\}$

2 The closure of $C \in \mathbb{R}^n$ is defined as

 $\overline{\mathcal{C}} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash \mathcal{C})^{\circ}.$

 \bullet The boundary of $\mathcal{C}\in\mathbb{R}^n$ is defined as $\overline{\mathcal{C}}\backslash\mathcal{C}^\circ.$

Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{x} \in (\text{dom } f)^\circ$. The derivative at \mathbf{x} is

$$
Df(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.
$$

This matrix is also called Jacobian matrix.

When f is real-valued, i.e., $f : \mathbb{R}^n \to \mathbb{R}$, the gradient of f is:

$$
\nabla f(\mathbf{x}) = Df(\mathbf{x})^{\top} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times 1}.
$$

Gradient of matrix functions

Suppose that $f:\mathbb{R}^{m\times n}\to\mathbb{R}.$ Then the gradient of f with respect to $\mathsf X$ is

$$
\nabla f(\mathbf{X}) = \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n}.
$$

Example:

$$
f(\mathbf{X}) = \|\mathbf{X}\|_F^2
$$

Examples

\n- **6** For
$$
\mathbf{a}, \mathbf{x} \in \mathbb{R}^n
$$
, we have $\frac{\partial \mathbf{a}^\top \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$.
\n- **8** For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \text{tr}(\mathbf{A}^\top \mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}$.
\n- **9** For $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^\top) \mathbf{x}$. If \mathbf{A} is symmetric, we have $\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$.
\n

We can find more results in the matrix cookbook: <https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf>

Chain rules

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{x} \in \text{dom } f$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(\mathbf{x}) \in (\text{dom } g)^\circ$. Define the composition $h : \mathbb{R}^n \to \mathbb{R}^p$ by $h(z) = g(f(z))$. Then h is is differentiable at x and

$$
Dh(\mathbf{x}) = D(g(f(\mathbf{x})))D(f(\mathbf{x})).
$$

Examples:

Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ and $h(\mathsf{x}) = g(f(\mathsf{x}))$. Then

$$
\nabla h(\mathbf{x}) = g'(f(\mathbf{x})) \nabla f(\mathbf{x}).
$$

Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$. Define $h: \mathbb{R}^p \to \mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$
\nabla h(\mathbf{x}) = \mathbf{A}^\top \nabla f(\mathbf{A}\mathbf{x} + \mathbf{b}).
$$

What is the gradient of the following loss function?

$$
f(\mathbf{x}) = \log \sum_{i=1}^{m} \exp(\mathbf{a}_i^{\top} \mathbf{x} + b_i)
$$
 (1)

The Hessian matrix

Suppose that $f:\mathbb{R}^n\to\mathbb{R}$ is a smooth function that takes as input a matrix $\mathbf{x} \in \mathbb{R}^n$ and returns a real value. Then the Hessian matrix with respect to **x**, written as $\nabla^2 f(\mathbf{x})$, which is defined as

$$
\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}.
$$

Taylor's expansion for multivariable function $f: \mathbb{R}^n \to \mathbb{R}^n$

$$
f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top}(\mathbf{x} - \mathbf{a}) + \frac{1}{2}(\mathbf{x} - \mathbf{a})^{\top} \nabla^2 f(\mathbf{a})(\mathbf{x} - \mathbf{a})
$$

Chain rules for second derivative

• Suppose
$$
f : \mathbb{R}^n \to \mathbb{R}
$$
, $g : \mathbb{R} \to \mathbb{R}$ and $h(\mathbf{x}) = g(f(\mathbf{x}))$. Then
\n
$$
\nabla^2 h(\mathbf{x}) = g'(f(\mathbf{x})) \nabla^2 f(\mathbf{x}) + g''(f(\mathbf{x})) \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^\top.
$$

Suppose $f:\mathbb{R}^n\to\mathbb{R}$, $\mathbf{A}\in\mathbb{R}^{n\times p}$ and $b\in\mathbb{R}^n$. Define $h:\mathbb{R}^p\to\mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$
\nabla^2 h(\mathbf{x}) = \mathbf{A}^\top \nabla^2 f(\mathbf{A}\mathbf{x} + \mathbf{b}) \mathbf{A}.
$$

Bonus homework: Compute the Hessian matrix of loss function [\(1\)](#page-10-0).

Outline

Lines and Line Segments (直线与线段)

line through x_1 and x_2 : all points

$$
\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad \theta \in \mathbb{R}.
$$

line segment between x_1 and x_2 : all points

$$
\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad 0 \le \theta \le 1.
$$

Convex Sets (凸集)

A set $\mathcal{S} \subseteq \mathbb{R}^n$ is convex if the line segment between any two points of \mathcal{S} lies in S, i.e., if for any $x, y \in S$ and $\theta \in [0, 1]$, we have

$$
\theta \mathbf{x} + (1-\theta) \mathbf{y} \in \mathcal{S}.
$$

Every two points can see each other.

- **•** If S is a convex set, then $kS = \{ks | k \in \mathbb{R}, s \in S\}$ is convex.
- **•** If S and T are convex sets, then $S + T = {s + t | s \in S, t \in T}$ is convex.
- **•** If S and T are convex sets, then $S \times T = \{(\mathbf{s}, \mathbf{t}) | \mathbf{s} \in S, \mathbf{t} \in T\}$ is convex.
- **If** S and T are convex sets, then $S \cap T$ is convex.

Convex combination of x_1, \ldots, x_k : any point x of the form

 $\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \cdots + \theta_k \mathbf{x}_k$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i > 0$.

If x_1, \ldots, x_k belong to a convex set S, then their convex combination x also belongs to S .

Convex Hull (凸包)

Convex hull conv S : set of all convex combinations of points in S .

$$
\text{conv}\mathcal{S} = \{\theta_1\mathbf{x}_1 + \cdots + \theta_k\mathbf{x}_k | \mathbf{x}_i \in \mathcal{S}, \theta_i \ge 0, i = 1, \ldots, k, \theta_1 + \cdots + \theta_k = 1\}.
$$

Example: convex hull of $\{0, 1\}$ is $[0, 1]$.

A set is called affine set if it contains the line through any two distinct points in the set.

Example: solution set of linear equations $\{x | Ax = b\}$.

Cones (锥)

A set C is called a **cone** if for every $x \in C$ and $\theta > 0$ we have $\theta x \in C$. A set C is called a **convex cone** if it is convex and a cone, which means that for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 > 0$, we have

 θ_1 x₁ + θ_2 x₂ $\in \mathcal{C}$.

Hyperplanes and Halfspaces (超平面与半平面)

Hyperplane: set of the form $\{x | a^{\top}x = b\}$ $(a \neq 0)$.

Halfplane: set of the form $\{x | a^{\top} x \leq b\}$ $(a \neq 0)$.

Hyperplane is affine set.

Norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$.

Norm Cones (范数锥)

Norm cone: $\{(x, t) | ||x|| \le t\}.$

Operations that preserve convexity (保凸运算)

Affine functions (仿射函数).

Suppose $\mathcal S$ is convex and $f:\mathbb R^n\to \mathbb R^m$ is an affine function:

$$
f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}.
$$

Then the image of S under f:

$$
f(\mathcal{S}) = \{f(\mathbf{x}) | \mathbf{x} \in \mathcal{S}\}
$$

is convex. The inverse image:

$$
f^{-1}(\mathcal{S}) = \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \in \mathcal{S} \}
$$

is convex.

Operations that preserve convexity (保凸运算)

Intersection (取交集).

The intersection of (any number of) convex sets is convex, i.e., if S_{α} is convex for any $\alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} \mathcal{S}_{\alpha}$ is convex.

A closed convex set S is the intersection of all halfspaces contain it:

$$
\mathcal{S} = \bigcap \{ \mathcal{H} | \mathcal{H} \text{ is halfspace}, \mathcal{S} \subseteq \mathcal{H} \}
$$

Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists $a \neq 0$ and b s.t.

$$
\mathbf{a}^{\top}\mathbf{x} \leq b \text{ for } \mathbf{x} \in \mathcal{C}, \quad \mathbf{a}^{\top}\mathbf{x} \geq b \text{ for } \mathbf{x} \in \mathcal{D}.
$$

Hyperplane Separation Theorem

Suppose C and D are nonempty disjoint convex sets. If C is closed and D is compact, there exists $a \neq 0$ and b s.t.

$$
\mathbf{a}^{\top}\mathbf{x} < b \text{ for } \mathbf{x} \in \mathcal{C}, \quad \mathbf{a}^{\top}\mathbf{x} > b \text{ for } \mathbf{x} \in \mathcal{D}.
$$

Example: a point and a closed convex set.

Supporting Hyperplane Theorem

supporting hyperplane to set $\mathcal C$ at boundary point $\mathbf x_0$:

 $\{a^{\top}x = a^{\top}x_0\}$

where $\mathbf{a}\neq 0$ and $\mathbf{a}^\top \mathbf{x} \leq \mathbf{a}^\top \mathbf{x}_0$ for all $\mathbf{x}\in \mathcal{C}$.

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C .

