Optimization for Machine Learning 机器学习中的优化方法

陈 程

华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn

1/28

Topology in Euclidean space

- A subset S of ℝⁿ is called open, if for every x ∈ S there exists δ > 0 such that the ball B_δ(x) = {y : ||y x||₂ ≤ δ} is included in S.
 Example: {x|a < x < b}, {x|x > 0}, {x| ||x a|| < 1}.
- A subset C of ℝⁿ is called closed, if its complement C^c = ℝⁿ\C is open.

Example: $\{x | a \le x \le b\}$, $\{x | x \ge 0\}$, $\{x | \|x - a\| \le 1\}$.

- A subset C of \mathbb{R}^n is called **bounded**, if there exists r > 0 such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in C$. **Example:** $\{x | a \le x < b\}$, $\{\mathbf{x} | 1 > \mathbf{x} \ge 0\}$, $\{\mathbf{x} | \|\mathbf{x} - \mathbf{a}\| < 1\}$.
- A subset C of ℝⁿ is called compact, if it is both bounded and closed.
 Example: {x|a ≤ x ≤ b}, {x|1 ≥ x ≥ 0}, {x| ||x − a|| ≤ 1}.

3/28

1 The **interior** of $C \in \mathbb{R}^n$ is defined as

$$\mathcal{C}^{\circ} = \{\mathbf{y} : \text{there exist } \varepsilon > 0 \text{ such that } \mathcal{B}_{\varepsilon}(\mathbf{y}) \subset \mathcal{C}\}$$

2 The **closure** of $C \in \mathbb{R}^n$ is defined as

 $\overline{\mathcal{C}} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash \mathcal{C})^{\circ}.$

③ The **boundary** of $C \in \mathbb{R}^n$ is defined as $\overline{C} \setminus C^\circ$.

Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{x} \in (\text{dom } f)^\circ$. The derivative at \mathbf{x} is

$$\mathrm{D}f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

This matrix is also called Jacobian matrix.

When f is real-valued, i.e., $f : \mathbb{R}^n \to \mathbb{R}$, the gradient of f is:

$$\nabla f(\mathbf{x}) = \mathrm{D}f(\mathbf{x})^{\top} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times 1}.$$

Gradient of matrix functions

Suppose that $f : \mathbb{R}^{m \times n} \to \mathbb{R}$. Then the gradient of f with respect to **X** is

$$\nabla f(\mathbf{X}) = \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

Example:

 $f(\mathbf{X}) = \|\mathbf{X}\|_F^2$

Examples

We can find more results in the matrix cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Chain rules

Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{x} \in \text{dom } f$ and $g : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(\mathbf{x}) \in (\text{dom } g)^\circ$. Define the composition $h : \mathbb{R}^n \to \mathbb{R}^p$ by $h(\mathbf{z}) = g(f(\mathbf{z}))$. Then h is is differentiable at \mathbf{x} and

$$\mathrm{D}h(\mathbf{x}) = \mathrm{D}(g(f(\mathbf{x})))\mathrm{D}(f(\mathbf{x})).$$

Examples:

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ and $h(\mathbf{x}) = g(f(\mathbf{x}))$. Then

$$abla h(\mathbf{x}) = g'(f(\mathbf{x})) \nabla f(\mathbf{x}).$$

• Suppose $f : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$. Define $h : \mathbb{R}^p \to \mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$\nabla h(\mathbf{x}) = \mathbf{A}^\top \nabla f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

What is the gradient of the following loss function?

$$f(\mathbf{x}) = \log \sum_{i=1}^{m} \exp(\mathbf{a}_i^{\top} \mathbf{x} + b_i)$$

(1)

The Hessian matrix

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function that takes as input a matrix $\mathbf{x} \in \mathbb{R}^n$ and returns a real value. Then the Hessian matrix with respect to \mathbf{x} , written as $\nabla^2 f(\mathbf{x})$, which is defined as

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Taylor's expansion for multivariable function $f : \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) pprox f(\mathbf{a}) +
abla f(\mathbf{a})^{ op} (\mathbf{x} - \mathbf{a}) + rac{1}{2} (\mathbf{x} - \mathbf{a})^{ op}
abla^2 f(\mathbf{a}) (\mathbf{x} - \mathbf{a})$$

Chain rules for second derivative

• Suppose
$$f : \mathbb{R}^n \to \mathbb{R}$$
, $g : \mathbb{R} \to \mathbb{R}$ and $h(\mathbf{x}) = g(f(\mathbf{x}))$. Then
 $\nabla^2 h(\mathbf{x}) = g'(f(\mathbf{x}))\nabla^2 f(\mathbf{x}) + g''(f(\mathbf{x}))\nabla f(\mathbf{x})\nabla f(\mathbf{x})^\top$.

• Suppose $f : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$. Define $h : \mathbb{R}^p \to \mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$\nabla^2 h(\mathbf{x}) = \mathbf{A}^\top \nabla^2 f(\mathbf{A}\mathbf{x} + \mathbf{b})\mathbf{A}.$$

Bonus homework: Compute the Hessian matrix of loss function (1).

Outline

Lines and Line Segments (直线与线段)

line through \mathbf{x}_1 and \mathbf{x}_2 : all points

$$\mathbf{x} = \mathbf{\theta}\mathbf{x}_1 + (1 - \mathbf{\theta})\mathbf{x}_2, \quad \mathbf{\theta} \in \mathbb{R}.$$

line segment between \mathbf{x}_1 and \mathbf{x}_2 : all points

$$\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad 0 \le \theta \le 1.$$

Convex Sets (凸集)

A set $S \subseteq \mathbb{R}^n$ is **convex** if the line segment between any two points of S lies in S, i.e., if for any $\mathbf{x}, \mathbf{y} \in S$ and $\theta \in [0, 1]$, we have

$$heta \mathbf{x} + (1- heta) \mathbf{y} \in \mathcal{S}.$$

Every two points can see each other.

- If S is a convex set, then $kS = \{k\mathbf{s} | k \in \mathbb{R}, \mathbf{s} \in S\}$ is convex.
- If S and T are convex sets, then $S + T = \{s + t | s \in S, t \in T\}$ is convex.
- If S and T are convex sets, then $S \times T = \{(s, t) | s \in S, t \in T\}$ is convex.
- If S and T are convex sets, then $S \cap T$ is convex.

Convex combination of x_1, \ldots, x_k : any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$.

If $\mathbf{x}_1, \ldots, \mathbf{x}_k$ belong to a convex set S, then their convex combination \mathbf{x} also belongs to S.

Convex Hull (凸包)

Convex hull convS: set of all convex combinations of points in S.

$$\operatorname{conv} \mathcal{S} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k | \mathbf{x}_i \in \mathcal{S}, \theta_i \ge 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}.$$

Example: convex hull of $\{0,1\}$ is [0,1].

A set is called **affine set** if it contains the line through any two distinct points in the set.

Example: solution set of linear equations $\{x | Ax = b\}$.

Cones (锥)

A set C is called a **cone** if for every $\mathbf{x} \in C$ and $\theta > 0$ we have $\theta \mathbf{x} \in C$. A set C is called a **convex cone** if it is convex and a cone, which means that for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\theta_1, \theta_2 > 0$, we have

$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}.$$

Lecture 02

Hyperplanes and Halfspaces (超平面与半平面)

Hyperplane: set of the form $\{\mathbf{x} | \mathbf{a}^\top \mathbf{x} = \mathbf{b}\}$ $(a \neq 0)$.

Halfplane: set of the form $\{\mathbf{x} | \mathbf{a}^\top \mathbf{x} \le \mathbf{b}\}$ $(a \neq 0)$.

Hyperplane is affine set.

	~~
.ecture	02 -

Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} - \mathbf{x}_c\| \le r\}$.

Norm Cones (范数锥)

Norm cone: $\{(x, t) | ||x|| \le t\}$.

Operations that preserve convexity (保凸运算)

Affine functions (仿射函数).

Suppose S is convex and $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function:

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}.$$

Then the image of S under f:

$$f(\mathcal{S}) = \{f(\mathbf{x}) | \mathbf{x} \in \mathcal{S}\}$$

is convex. The inverse image:

$$f^{-1}(\mathcal{S}) = \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \in \mathcal{S} \}$$

is convex.

Operations that preserve convexity (保凸运算)

Intersection (取交集).

The intersection of (any number of) convex sets is convex, i.e., if S_{α} is convex for any $\alpha \in A$, then $\cap_{\alpha \in A} S_{\alpha}$ is convex.

A closed convex set S is the intersection of all halfspaces contain it:

$$\mathcal{S} = \bigcap \{ \mathcal{H} | \mathcal{H} \text{ is halfspace}, \mathcal{S} \subseteq \mathcal{H} \}$$

Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists $\mathbf{a} \neq \mathbf{0}$ and b s.t.

$$\mathbf{a}^{\top}\mathbf{x} \leq b ext{ for } \mathbf{x} \in \mathcal{C}, \ \ \mathbf{a}^{\top}\mathbf{x} \geq b ext{ for } \mathbf{x} \in \mathcal{D}.$$

Hyperplane Separation Theorem

Suppose C and D are nonempty disjoint convex sets. If C is closed and D is compact, there exists $\mathbf{a} \neq 0$ and b s.t.

$$\mathbf{a}^{\top}\mathbf{x} < \mathbf{b}$$
 for $\mathbf{x} \in \mathcal{C}$, $\mathbf{a}^{\top}\mathbf{x} > \mathbf{b}$ for $\mathbf{x} \in \mathcal{D}$.

Example: a point and a closed convex set.

Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{\mathbf{a}^{\top}\mathbf{x} = \mathbf{a}^{\top}\mathbf{x}_0\}$$

where $\mathbf{a} \neq 0$ and $\mathbf{a}^{\top} \mathbf{x} \leq \mathbf{a}^{\top} \mathbf{x}_0$ for all $\mathbf{x} \in \mathcal{C}$.

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

28 / 28