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Course setup

Grading Policy:

Homework, 40%

Final project, 60%

Teaching Assistant:

胡子成：51275902019@stu.ecnu.edu.cn

贾廷锴：51275902086@stu.ecnu.edu.cn

Website:

Homepage: chengchen8.github.io/optml2024.html

Homework: 大夏学堂 elearning.ecnu.edu.cn
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What can I learn in this course?

In practice, libraries are available, algorithms are treated as “black box”.

NOT HERE: we look inside the optimization algorithms and try to
understand why and how fast they work.

Prerequisite course: calculus, linear algebra, probability, Python/Matlab.

It would be better if you have learnt: machine learning, convex
optimization.
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What is machine learning?

Machine Learning studies how to empower computers to
automatically improve their own abilities by utilizing data.
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What is optimization?

Optimization
Statistic

Machine
Learning
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Why is optimization important?

Pedro Domingos (AAAI Fellow, Prof. of UW):

Machine Learning = Representation + Evaluation +
Optimization
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History of optimization

1847: Cauchy proposes gradient descent

1950s: Linear Programs, soon followed by non-linear, Stochastic
Gradient Descent (SGD)

1980s: General optimization, convergence theory

2005-2015: Large scale optimization (mostly convex) for machine
learning

2015-today: optimization methods for deep learning
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Optimization problems

General optimization problem:

min
x∈X

f (x)

X ⊆ Rd : feasible set

f : objective function

usually f is continuous in machine learning problems
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Classifications of optimization problems in machine
learning

The description of the feasible set:

unconstrained vs. constrained

The properties of the objective function:

linear vs. nonlinear

smooth vs. nonsmooth

convex vs. nonconvex

The settings in real application:

deterministic vs. stochastic

non-distributed vs. distributed
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Convex vs. Nonconvex

“In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” by R. T. Rockfeller
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No-free-lunch theorem for optimization

D. H. Wolpert and W. G. Macready (1997):

There is no universally better algorithms exist.

If algorithm A performs better than algorithm B for some
optimization functions, then B will outperform A for other functions.

If averaged over all possible function space, both algorithms A and B
will perform on average equally well.
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Empirical risk minimization

The most common optimization problem in machine learning is the
empirical risk minimization:

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

ℓ(x; ai , bi ) + λR(x), λ ≥ 0.

where ai is the data point, bi is the corresponding label and x is the
parameter of the model.

R(x) is called the regularization term.
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Loss functions

Some traditional loss functions:

squared loss (least square regression):

ℓ(x; ai , bi ) = (a⊤i x− bi )
2

hinge loss (support vector machine):

ℓ(x; ai , bi ) = max{1− bia
⊤
i x, 0}

logistic loss (logistic regression):

ℓ(x; ai , bi ) = ln(1 + exp(−bia
⊤
i x))
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Regularization terms

Some popular regularization terms:

Ridge regularization:
R(x) ≜ ∥x∥22

Lasso regularization:
R(x) ≜ ∥x∥1
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Deep learning

For deep learning the loss function ℓ could be highly nonconvex.

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

ℓ(x; ai , bi ) + λR(x), λ ≥ 0.
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Notations

We use xi to denote the entry of the n-dimensional vector x such that

x =


x1
x2
...
xn

 ∈ Rn.

We use aij to denote the entry of matrix A with dimension m× n such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n.
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Vector norms

A norm of a vector x ∈ Rn written by ∥x∥, is informally a measure of the
length of the vector. For example, we have the commonly-used Euclidean
norm (or ℓ2 norm),

∥x∥2 =
√
x⊤x =

√√√√ n∑
i=1

x2i .

Formally, a norm is any function Rn → R that satisfies four properties:

1 For all x ∈ Rn, we have ∥x∥ ≥ 0 (non-negativity).

2 ∥x∥ = 0 if and only if x = 0 (definiteness).

3 For all x ∈ Rn and t ∈ R, we have ∥tx∥ = |t| ∥x∥ (homogeneity).

4 For all x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).
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Vector norms

Some examples for x ∈ Rn:

The ℓ1-norm: ∥x∥1 =
∑n

i=1 |xi |

The ℓ2-norm: ∥x∥2 =
√∑n

i=1 x
2
i

The ℓ∞-norm: ∥x∥∞ = maxi |xi |
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Vector inner product

The inner product on Rn is given by:

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi .

We have following properties:

⟨x, x⟩ = ∥x∥22
|⟨x, y⟩| ≤ ∥x∥2∥y∥2 (Cauchy–Schwarz inequality)
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Matrix norms

General matrix norm is any function Rm×n → R that satisfies:

1 For all A ∈ Rm×n, we have ∥A∥ ≥ 0 (non-negativity).

2 ∥A∥ = 0 if and only if A = 0 (definiteness).

3 For all A ∈ Rm×n and t ∈ R, we have ∥tA∥ = |t| ∥A∥ (homogeneity).

4 For all A,B ∈ Rm×n, we have ∥A+ B∥ ≤ ∥A∥+ ∥B∥
(triangle inequality).

Frobenius norm of m × n matrix A:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2i ,j
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Induced matrix norms

Given vector norm ∥·∥, the corresponding induced matrix norm of
A ∈ Rm×n is defined as

∥A∥ = sup
x∈Rn,x̸=0

∥Ax∥
∥x∥

= sup
x∈Rn,∥x∥=1

∥Ax∥ .

For example, we define

∥A∥1 = sup
x∈Rn,∥x∥1=1

∥Ax∥1

∥A∥2 = sup
x∈Rn,∥x∥2=1

∥Ax∥2

∥A∥∞ = sup
x∈Rn,∥x∥∞=1

∥Ax∥∞ .
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Symmetric eigenvalue decomposition

The eigenvalue decomposition (EVD) of a symmetric matrix A ∈ Rn×n is

A = QΛQ⊤,

where Q ∈ Rn×n is orthogonal and Λ ∈ Rn×n is a diagonal matrix, i.e.,
Λ = diag(λ1, λ2, . . . , λn) where λi are eigenvalues of A.

Usually we order the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn. We use λi (A) to
denote the i-th largest eigenvalue of A.
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Singular value decomposition

The singular value decomposition (SVD) of matrix A ∈ Rm×n is

A = UΣV⊤,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is rectangular diagonal matrix
with non-negative real numbers on the diagonal and V ∈ Rn×n is
orthogonal.

Usually we order the eigenvalues as σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}. We use
σi (A) to denote the i-th largest singular value of A.
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Singular value decomposition

The term sometimes refers to the compact SVD, a similar decomposition

A = UrΣrV
⊤
r

in which Σr is square diagonal of size r × r , where r ≤ min{m, n} is the
rank of A, and has only the non-zero singular values. In this variant, Ur is
an m × r column orthogonal matrix and Vr is an n × r column orthogonal
matrix such that U⊤

r Ur = V⊤
r Vr = I.
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Pseudo-inverse of general matrices

Let A = UΣV⊤ be the singular value decomposition of A ∈ Rm×n with
rank(A) = r . We define the pseudo-inverse of A as

A† = VΣ−1U⊤ ∈ Rn×m.

Lecture 01 OptML September 24, 2024 26 / 32



Quadratic forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar x⊤Ax is
called a quadratic form and we have

x⊤Ax =
n∑

i=1

n∑
j=1

aijxixj .

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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Definiteness

1 A symmetric matrix A ∈ Rn×n is positive definite (PD) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax > 0. This is usually
denoted by A ≻ 0.

2 A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≥ 0. This is usually denoted by
A ⪰ 0.
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Q-convergence Rates

Assume the sequence {xk} converges to x∗. We define the sequence of
errors to be

zk = ∥xk − x∗∥ .

We say the sequence {xk} converges to x∗ with rate r and rate constant C
if

lim
k→+∞

zk+1

z rk
= C for some C ∈ R.

linear: r = 1, 0 < C < 1; Q-linear

sublinear: r = 1, C = 1;

superlinear: r = 1, C = 0;

quadratic: r = 2.
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Q-convergence rates

Examples:

xk = 1/k2

xk = 10−k

xk = 10−2k

xk+1 = xk/2 + 2/xk , x1 = 4
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Convergence rates

Consider the example

xk =

{
1 + 2−k , if k is even,

1, if k is odd.

It should converge to x∗ = 1 linearly, however,

lim
k→+∞

|xk+1 − x∗|
|xk − x∗|

does not exist.
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R-convergence rates

Suppose that {xk} converges to x∗. The sequence is said to converge
R-linearly to x∗ if there exists a sequence {ϵk} such that

∥xk − x∗∥ ≤ ϵk

for all k and {ϵk} converges Q-linearly to zero.

The sequence

xk =

{
1 + 2−k , if k is even,

1, if k is odd.

R-linearly converges to one.
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