Notes for Lecture 6
Scribe: Tingkai Jia

1 Some Properties of Projection
Property 1. Suppose f is a convexr function and C is a closed conver set. Let

% = argmin f(x) and x,=argmin f(x)
xeR4 x€eC

It is possible that
X 7§ Pc ()E)
Consider a counterpart example, x € R?, f(x) = 2% + 52%,C = {x|z1 + 72 = 1}. The minimizer of f is

x, =0, and Pe(x.) = (3,3) ", then we see

f(Petx)) = 5

< f(1,0) =

which means P¢(x,) is not minimizer in constrained set.

Property 2. Let C € R? be closed and convex, z € C, x € R%. Then
(x — Pe(x),z — Pe(x)) <0.

Proof. Let Vy € C,g(y) = ||x — y||3, then P¢(x) = miny g(y). Consider that Pc(x) is the minimizer of ¢ in
C, with Vz € C, we have
(Vg(Pe(x)),z = Pe(x)) 2 0,
which means
(—2(x — Pe(x)),z — Pe(x)) > 0.
Thus we finish the proof. O

Property 3. Let C € R? be closed and convex. For any x,z € R?, we have
[Pe(x) = Pe(2)l2 < |x — 2|2
Proof. With Property 2] mentioned above, we first have
(x = Pe(x), Pe(z) = Pe(x)) <0 and  (z — Pe(z), Pe(x) — Pe(z)) < 0.
Combining the two inequalities
(x — Pe(x), Pe(z) — Pe(x)) < (Pc(z) — 2, Pe(x) — Pe(z)),

and rearranging the terms, we get

[Pe(x) = Pe(2)lls < (x — 2, Pe(x) — Pe(a))

[x = 2[|2[Pe(x) — Pe(z)]2,

thus we finish the proof. O
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2 Strongly Convex and Smooth Constrained Optimization

Lemma 1. Suppose that f : R* — R is u-strongly convex and L-smooth. Thus

(V1) = Vf(y)x=¥) 2 L= yIE+ IV = VI,

Theorem 1. Let f be L-smooth and p-strongly convezr. If gy =n = w%7 then PGD obeys

t
k—1
I = xlle < (557) o= .l

k+1

Proof. Let S(x) =x —nV f(x), we have

IS(v) = S5 = lly —x +n(Vf(x) = VI¥)I3,

then expand the equation and substitute Lemma |l we get
1S() = S5 = lly — x5 + n*IVF(x) = VI3 — 2n{x — ¥,V f(x) = Vf(y))

2 2nuL
< (7 - 225 ) 1910 = Vs + (1= 222 ) Ix - vI3

2
w—L
— (57) Ix- v

which means S is a contraction mapping. Then we let T'(x) = P¢(S(x)), which immediately follows that

760 - 7@z < 1569 = Sl < (257 ) - vl

Therefore, projected gradient descent algorithm maintains the same convergence rate for constrained prob-
lems as for unconstrained problems. O

3 Convex and Smooth Constrained Optimization

Lemma 2. Let C € R? be closed and conve, for anyx,y € C, x™ = Pe(x— 1V f(x)) and gc(x) = L(x—xT).
Then

Vix)(x"—y) <gelx)" (x" —y).

Proof. By applying Property [2] we immediately obtain

(9e(x) = Vf(x),y —x*) <0.
Thus we finish the proof. O
Lemma 3. Suppose f is convex and L-smooth. For any x,y € C, let xT = Pe(x — 1V f(x)) and ge(x) =
L(x —xT). Then

F3) 2 ) + 00Ty = %) + 5 lae (Ol



Proof. Tt follows that

> 97607 (y =)~ (V00T 6" %)+ 5t - x)

= Vi (v —x") — plx 3

L
> ge(x) T (y = x7) = 5 I — xI3

= 0e()T(y — ) + () (= xt) — 5 xt — 3

1
= 9009y = %) + 57 loc (),
where the last inequality uses Lemma [2| mentioned above, and we finish the proof.
Theorem 2. Let f be conver and L-smooth. If iy, =n = %, then PGD obeys

Llxo — x.3
2t '

Proof. For the constrained case, we aims to replace V f(x) in the unconstrained case by
ge(x) = L(x = Pe(x = V[ (x))),
we have ge(x¢) = L(x¢ — X¢+1). Then by applying Lemma [3| and setting x =y = x;, we obtain

1

fxep1) < f(xe) - EHQC(Xt)H%v

which means we have a guarantee of descent. Applying again and setting x = X,y = X, we obtain

flxe) = f(xi) <

F(xa) = F(xe41) + ge(xe) T (% — xe) + illgc(Xt)llﬁv

then rearrange these terms, we get
T 1 2
F(xe1) = F(3x0) = ge(xe) " (% = %¢) = 57 llge(xe) 12

() — - [2Lge(x0) T (%0 — x0) + g0 (x) Tge(x2)]

2L
1
= f(x:) — BYa (9c(x¢), 2L(xx — X¢) + ge(x¢))
L
= f(x«) — 9 < ¢ — X1, 2% — Xg — Xpq1)
L 2 2
= f(xe) = 5 [l =%l = lIxe = xall2]
Then by telescoping the last inequality, we finally obtain
1=t
FOx) = f(xa) < 5 D flxign) = F(x)
i=0
L
< 5 llxe = X013 = [I%e = Xe41]3]

_ e =0l
- 2t
Thus we finish the proof.
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