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Scribe: Tingkai Jia

1 Some Properties of Projection

Property 1. Suppose f is a convex function and C is a closed convex set. Let

x̂ = argmin
x∈Rd

f(x) and x∗ = argmin
x∈C

f(x)

It is possible that
x∗ ̸= PC(x̂).

Consider a counterpart example, x ∈ R2, f(x) = x2
1 + 5x2

2, C = {x|x1 + x2 = 1}. The minimizer of f is
x∗ = 0, and PC(x∗) = (12 ,

1
2 )

⊤, then we see

f(PC(x∗)) =
3

2
< f(1, 0) = 1,

which means PC(x∗) is not minimizer in constrained set.

Property 2. Let C ∈ Rd be closed and convex, z ∈ C, x ∈ Rd. Then

⟨x− PC(x), z− PC(x)⟩ ≤ 0.

Proof. Let ∀y ∈ C, g(y) = ∥x− y∥22, then PC(x) = miny g(y). Consider that PC(x) is the minimizer of g in
C, with ∀z ∈ C, we have

⟨∇g(PC(x)), z− PC(x)⟩ ≥ 0,

which means
⟨−2(x− PC(x)), z− PC(x)⟩ ≥ 0.

Thus we finish the proof.

Property 3. Let C ∈ Rd be closed and convex. For any x, z ∈ Rd, we have

∥PC(x)− PC(z)∥2 ≤ ∥x− z∥2.

Proof. With Property 2 mentioned above, we first have

⟨x− PC(x),PC(z)− PC(x)⟩ ≤ 0 and ⟨z− PC(z),PC(x)− PC(z)⟩ ≤ 0.

Combining the two inequalities

⟨x− PC(x),PC(z)− PC(x)⟩ ≤ ⟨PC(z)− z,PC(x)− PC(z)⟩,

and rearranging the terms, we get

∥PC(x)− PC(z)∥22 ≤ ⟨x− z,PC(x)− PC(z)⟩
≤ ∥x− z∥2∥PC(x)− PC(z)∥2,

thus we finish the proof.



2 Strongly Convex and Smooth Constrained Optimization

Lemma 1. Suppose that f : Rd → R is µ-strongly convex and L-smooth. Thus

⟨∇f(x)−∇f(y),x− y⟩ ≥ µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22.

Theorem 1. Let f be L-smooth and µ-strongly convex. If ηt ≡ η = 2
µ+L , then PGD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2.

Proof. Let S(x) = x− η∇f(x), we have

∥S(y)− S(x)∥22 = ∥y − x+ η(∇f(x)−∇f(y))∥22,

then expand the equation and substitute Lemma 1, we get

∥S(y)− S(x)∥22 = ∥y − x∥22 + η2∥∇f(x)−∇f(y)∥22 − 2η⟨x− y,∇f(x)−∇f(y)⟩

≤
(
η2 − 2η

µ+ L

)
∥∇f(x)−∇f(y)∥22 +

(
1− 2ηµL

µ+ L

)
∥x− y∥22

=

(
µ− L

µ+ L

)2

∥x− y∥22,

which means S is a contraction mapping. Then we let T (x) = PC(S(x)), which immediately follows that

∥T (x)− T (y)∥2 ≤ ∥S(x)− S(y)∥2 ≤
(
µ− L

µ+ L

)
∥x− y∥2

Therefore, projected gradient descent algorithm maintains the same convergence rate for constrained prob-
lems as for unconstrained problems.

3 Convex and Smooth Constrained Optimization

Lemma 2. Let C ∈ Rd be closed and convex, for any x,y ∈ C, x+ = PC(x− 1
L∇f(x)) and gC(x) = L(x−x+).

Then
∇f(x)⊤(x+ − y) ≤ gC(x)

⊤(x+ − y).

Proof. By applying Property 2, we immediately obtain〈
x− 1

L
∇f(x)− x+,y − x+

〉
≤ 0

〈
gC(x)−∇f(x),y − x+

〉
≤ 0.

Thus we finish the proof.

Lemma 3. Suppose f is convex and L-smooth. For any x,y ∈ C, let x+ = PC(x − 1
L∇f(x)) and gC(x) =

L(x− x+). Then

f(y) ≥ f(x+) + gC(x)
⊤(y − x) +

1

2L
∥gC(x)∥22.
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Proof. It follows that

f(y)− f(x+) = f(y)− f(x)− (f(x+)− f(x))

≥ ∇f(x)⊤(y − x)−
(
∇f(x)⊤(x+ − x) +

L

2
∥x+ − x∥22

)
= ∇f(x)⊤(y − x+)− L

2
∥x+ − x∥22

≥ gC(x)
⊤(y − x+)− L

2
∥x+ − x∥22

= gC(x)
⊤(y − x) + gC(x)

⊤(x− x+)− L

2
∥x+ − x∥22

= gC(x)
⊤(y − x) +

1

2L
∥gC(x)∥22,

where the last inequality uses Lemma 2 mentioned above, and we finish the proof.

Theorem 2. Let f be convex and L-smooth. If ηt ≡ η = 1
L , then PGD obeys

f(xt)− f(x∗) ≤
L∥x0 − x∗∥22

2t
.

Proof. For the constrained case, we aims to replace ∇f(x) in the unconstrained case by

gC(x) = L(x− PC(x−∇f(x))),

we have gC(xt) = L(xt − xt+1). Then by applying Lemma 3 and setting x = y = xt, we obtain

f(xt+1) ≤ f(xt)−
1

2L
∥gC(xt)∥22,

which means we have a guarantee of descent. Applying again and setting x = xt,y = x∗, we obtain

f(x∗) ≥ f(xt+1) + gC(xt)
⊤(x∗ − xt) +

1

2L
∥gC(xt)∥22,

then rearrange these terms, we get

f(xt+1) ≤ f(x∗)− gC(xt)
⊤(x∗ − xt)−

1

2L
∥gC(xt)∥22

= f(x∗)−
1

2L

[
2LgC(xt)

⊤(x∗ − xt) + gC(xt)
⊤gC(xt)

]
= f(x∗)−

1

2L
⟨gC(xt), 2L(x∗ − xt) + gC(xt)⟩

= f(x∗)−
L

2
⟨xt − xt+1, 2x∗ − xt − xt+1⟩

= f(x∗)−
L

2

[
∥x∗ − xt+1∥22 − ∥x∗ − xt∥22

]
.

Then by telescoping the last inequality, we finally obtain

f(xt)− f(x∗) ≤
1

t

t−1∑
i=0

f(xi+1)− f(x∗)

≤ L

2t

[
∥x∗ − x0∥22 − ∥x∗ − xt+1∥22

]
≤ L∥x∗ − x0∥22

2t
.

Thus we finish the proof.
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