Notes for Lecture 5
Scribe: Tingkai Jia

1 Polyak-Lojasiewicz Condition

Without a strong convexity condition, some functions can still achieve linear convergence if they satisfy
Polyak-Lojasiewicz Condition shown as

%) — f(x,) < inwo«mz.

With PL condition, we obtain the following theorem.

Theorem 1. Suppose f satisfies PL condition and is L-smooth. If ny =n = %, then

P — 7o) < (1= 2) (o) — 1)

Proof. Since f is L-smooth, we firstly have
L 2
f(xe1) < f(xe) +(V(xe), Xe41 — xe) + §||th+1 —x¢%

substitute x;41 = x; — +V f(x;), we then get

L

Fxern) < Fx) = ZIVIGI? + 5 - 25V 70|

1
f(xeg1) < f(xe) — E||Vf(xt)H2~
With the above fact, we can obtain

1

Flxen) = F(x) < f0xe) = f(x0) = 57 V)|

I I
Jxes1) = F0) < flox0) = f0e) = 5 (F0) = 00)) = (1= 2) (7x0) = 7)),
where the last inequality comes from PL condition, and apply it recursively, we can complete the proof. [
Here is an example of achieving linear convergence by applying the PL condition.

Example 1 (over-parameterized linear regression). Suppose m < n, with m data samples {a; € R™y; €
R}bi<i<m, @ linear model try to best fits the data

f: (a;rx — yi)2

=1

N =

minimizexcrr f(Xx) =

It is obvious that the hessian matrix of f is rank-deficient when m < n, so f is not strongly convex and
we have infinitely many of local minima that make f attain its minimum value of 0. But f satisfies PL
condition and can still get linear convergence as the following theorem show.



Theorem 2. Suppose that A = [aj,as,--- ,a,]" € R™*" has rank m, and n; = n = ﬁ. Then GD
obeys

, ™\’
o) ) < (1= 22BR Y (160 - S0

Proof. First we can see Vf(x) = AT(Ax —y), then we have
IV = (Ax —y) AAT (Ax —y)

IVFE)IZ = Amin(AAT)[Ax — v = 2Aumin f (%),
where the last inequality means f satisfies PL condition if we choose st = Amin(AAT). Then apply [1} we

immediately finish the proof. O
2 Convex and Smooth Functions Minimization

Lemma 1. Suppose f is conver and L-smooth. If n, =n = %, then
2 2 1 2
ler1 = xullz < flxe = xull2 = 51V Gxe)ll2,

where X, is any minimizer of f(-).

Proof. Tt follows that
01 = x5 =[x — % = 0(Vf(x) = Vf(x)]3

= [xe = %13 = 2n(xe = x., Vf(xe) = VF(x)) + 177V f (xe) = Vf ()13

2
< Jlxe — %13 - anVf(Xt) = VIE)E +0?IVF(xe) = VI (x)3

1
= lIxe = x5 = Vx5

Theorem 3. Suppose f is convex and L-smooth. If gy =n = %, then GD obeys

- 2L]x0 — %3

fxe) = f(x) < " ;
where x, is any minimizer of f(-).
Proof. First we use convexity and Cauchy-Schwartz to get
F(x) = f(xe) > (V(%e) %0 = %x¢) > = [[VF(x0)[2]]%0 — Xul2
Fxe) = Fx) o fxe) = fx)

e = Xull2 = [Ixo = Xull2

IVF(x)ll2 >

Setting A := f(x¢) — f(xx«), consider the fact also mentioned in
1

fxeg1) = flxe) < —EHVJC(Xt)HQa
combining the above two bounds yield
N2 1
Npp1 — Ny < —— L =~ N2,
LTS 0L %0 — %3 wo !



Dividing both sides by A;A¢y1 and rearranging the terms give

consider the last inequality recursively, we easily get

thus we complete the proof.
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