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1 Polyak-Lojasiewicz Condition

Without a strong convexity condition, some functions can still achieve linear convergence if they satisfy
Polyak-Lojasiewicz Condition shown as

f(x)− f(x∗) ≤
1

2µ
∥∇f(x)∥2.

With PL condition, we obtain the following theorem.

Theorem 1. Suppose f satisfies PL condition and is L-smooth. If ηt ≡ η = 1
L , then

f(xt)− f(x∗) ≤
(
1− µ

L

)t

(f(x0)− f(x∗))

Proof. Since f is L-smooth, we firstly have

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥∇xt+1 − xt∥2,

substitute xt+1 = xt − 1
L∇f(xt), we then get

f(xt+1) ≤ f(xt)−
1

L
∥∇f(xt)∥2 +

L

2
· 1

L2
∥∇f(xt)∥2

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2.

With the above fact, we can obtain

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L
∥∇f(xt)∥2

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
µ

L
(f(xt)− f(x∗)) =

(
1− µ

L

)
(f(xt)− f(x∗)) ,

where the last inequality comes from PL condition, and apply it recursively, we can complete the proof.

Here is an example of achieving linear convergence by applying the PL condition.

Example 1 (over-parameterized linear regression). Suppose m < n, with m data samples {ai ∈ Rn, yi ∈
R}1≤i≤m, a linear model try to best fits the data

minimizex∈Rn f(x) =
1

2

m∑
i=1

(
a⊤i x− yi

)2
It is obvious that the hessian matrix of f is rank-deficient when m < n, so f is not strongly convex and

we have infinitely many of local minima that make f attain its minimum value of 0. But f satisfies PL
condition and can still get linear convergence as the following theorem show.



Theorem 2. Suppose that A = [a1,a2, · · · ,am]⊤ ∈ Rm×n has rank m, and ηt ≡ η = 1
λmax(AA⊤)

. Then GD

obeys

f(xt)− f(x∗) ≤
(
1− λmin(AA⊤)

λmax(AA⊤)

)t

(f(x0)− f(x∗))

Proof. First we can see ∇f(x) = A⊤(Ax− y), then we have

∥∇f(x)∥22 = (Ax− y)⊤AA⊤(Ax− y)

∥∇f(x)∥22 ≥ λmin(AA⊤)∥Ax− y∥22 = 2λminf(x),

where the last inequality means f satisfies PL condition if we choose µ = λmin(AA⊤). Then apply 1, we
immediately finish the proof.

2 Convex and Smooth Functions Minimization

Lemma 1. Suppose f is convex and L-smooth. If ηt ≡ η = 1
L , then

∥xt+1 − x∗∥22 ≤ ∥xt − x∗∥22 −
1

L2
∥∇f(xt)∥22,

where x∗ is any minimizer of f(·).

Proof. It follows that
∥xt+1 − x∗∥22 = ∥xt − x∗ − η(∇f(xt)−∇f(x∗)∥22

= ∥xt − x∗∥22 − 2η⟨xt − x∗,∇f(xt)−∇f(x∗)⟩+ η2∥∇f(xt)−∇f(x∗)∥22

≤ ∥xt − x∗∥22 −
2η

L
∥∇f(xt)−∇f(x∗)∥22 + η2∥∇f(xt)−∇f(x∗)∥22

= ∥xt − x∗∥22 −
1

L2
∥∇f(xt)∥22.

Theorem 3. Suppose f is convex and L-smooth. If ηt ≡ η = 1
L , then GD obeys

f(xt)− f(x∗) ≤
2L∥x0 − x∗∥22

t
,

where x∗ is any minimizer of f(·).

Proof. First we use convexity and Cauchy-Schwartz to get

f(x∗)− f(xt) ≥ ⟨∇f(xt),x∗ − xt⟩ ≥ −∥∇f(xt)∥2∥xt − x∗∥2

∥∇f(xt)∥2 ≥ f(xt)− f(x∗)

∥xt − x∗∥2
≥ f(xt)− f(x∗)

∥x0 − x∗∥2
.

Setting △t := f(xt)− f(x∗), consider the fact also mentioned in 1

f(xt+1)− f(xt) ≤ − 1

2L
∥∇f(xt)∥2,

combining the above two bounds yield

△t+1 −△t ≤ − △2
t

2L∥x0 − x∗∥22
=: − 1

w0
△2

t .
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Dividing both sides by △t△t+1 and rearranging the terms give

1

△t+1
≥ 1

△t
+

△t

w0△t+1
≥ 1

△t
+

1

w0
,

consider the last inequality recursively, we easily get

1

△t
≥ 1

△0
+

t

w0
≥ t

w0

△t ≤
w0

t
=

2L∥x0 − x∗∥22
t

,

thus we complete the proof.
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