
Notes for Lecture 4

Scribe: Tingkai Jia

1 Quadratic Minimization

To learn about the convergence rate of GD, we begin with quadratic objective functions

minimizex f(x) =
1

2
x⊤Qx− b⊤x

for some n× n matrix Q ≻ 0, where ∇f(x) = Qx+ b. Now consider GD process shown as

xt+1 = xt − ηt∇f(xt).

Convergence rate: if ηt ≡ η = 2
λ1(Q)+λn(Q) , then

∥xt − x∗∥2 ≤
(
λ1 (Q)− λn (Q)

λ1 (Q) + λn (Q)

)t

∥x0 − x∗∥2,

where λ1 (Q) (resp. λn (Q)) is the largest (resp. smallest) eigenvalue of Q.

Proof. First we can easily get the gradient of objective function ∇f(x) = Qx − b, and the unique optimal
solution is x∗ = Q−1b. Then according to the GD update rule, by subtracting x∗ on both sides, we get

xt+1 − x∗ = xt − x∗ − ηt∇f(xt) = xt − x∗ − ηt (Qxt − b)

= xt − x∗ − ηtQ (xt − x∗) = (I− ηtQ) (xt − x∗) ,

taking l2 norm on both sides of the last equation, we get

∥xt+1 − x∗∥2 = ∥ (I− ηtQ) (xt − x∗) ∥2 ≤ ∥I− ηtQ∥2∥xt − x∗∥2.

Now we want to get the optimal convergence rate by setting ηt, which means minimizing the max eigenvalue
of matrix I−ηtQ (For a symmetric positive definite matrix, the singular values are equal to the eigenvalues).
Then we observe that

∥I− ηtQ∥2 = max {|1− ηtλ1(Q)|, |1− ηtλn(Q)|} =
λ1 (Q)− λn (Q)

λ1 (Q) + λn (Q)
,

the last equation means we set ηt ≡ η = 2
λ1(Q)+λn(Q) to make these two terms equal.

2 Equivalent characterizations of L-smoothness

Let f : Rd → R be a convex and differentiable function. Then the following properties are equivalent
characterizations of L-smoothness of f :

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 for all x,y ∈ Rd. (A)

⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥22 for all x,y ∈ Rd. (B)

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L

2
∥x− y∥22 for all x,y ∈ Rd. (C)



f(y)− f(x)− ⟨∇f(x),y − x⟩ ≥ 1

2L
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd. (D)

⟨∇f(x)−∇f(y),x− y⟩ ≥ 1

L
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd. (E)

Proof A ⇒ B: By Cauchy-Schwartz, we have

⟨∇f(x)−∇f(y),x− y⟩ ≤ ∥∇f(x)−∇f(y)∥2∥x− y∥2 ≤ L∥x− y∥22.

Proof B ⇒ C: Define the function G : [0, 1] → R as

G(t) := f(x+ t(y − x))− f(x)− ⟨∇f(x), t(y − x)⟩,

so that G(0) = 0 and G(1) = f(y) − f(x) − ⟨∇f(x),y − x⟩. By the fundamental theorem of calculus, we
have

G(1)−G(0) =

∫ 1

0

G′(t) dt =

∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt.

=

∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), t(y − x)⟩ 1
t
dt.

≤ L∥y − x∥22
∫ 1

0

tdt =
L

2
∥y − x∥22.

Proof C ⇒ D: We begin with a useful auxiliary lemma:

Lemma 1. Consider a differentiable function g : Rd → R satisfying condition (C) and with its global
minimum achieved at some v∗. Then

g(v)− g(v∗) ≥ 1

2L
∥∇g(v)∥22 for all v ∈ Rd.

Proof. We have

g(v∗) = inf
u∈Rd

g(u) ≤ inf
u∈Rd

{
g(v) + ⟨∇g(v),u− v⟩+ L

2
∥v − u∥22

}
= g(v)− 1

2L
∥∇g(v)∥22,

where the last step follows by showing that the minimum of the quadratic program over u is achieved at
u∗ = v − 1

L∇g(v), and then performing some algebra.
Note: This lemma and its proof are of independent interest, as they show how gradient descent with step
size 1/L can be thought of as minimizing a linear approximation along with a quadratic regularization term
scaled by L/2.

Let us now show that C ⇒ D. For a fixed x ∈ Rd, define the function

gx(z) = f(z)− ⟨∇f(x), z⟩.

Note that gx is convex, differentiable and minimized when z = x, and it satisfies our smoothness condition.
Hence, the preceding lemma with v∗ = x and v = y implies that

gx(y)− gx(x) ≥
1

2L
∥∇gx(y)∥22 =

1

2L
∥∇f(y)−∇f(x)∥22.

A little bit of calculation shows that

gx(y)− gx(x) = f(y)− f(x)− ⟨∇f(x),y − x⟩,

which completes the proof.
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Proof D ⇒ E: We have

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≥ 1

2L
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd,

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ 1

2L
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd.

Adding these inequalities yields E.
Proof E ⇒ A: By Cauchy-Schwartz, we have

⟨∇f(y)−∇f(x),y − x⟩ ≤ ∥∇f(y)−∇f(x)∥2∥x− y∥2.

3 Equivalent characterizations of µ-strong convexity

Let f : Rd → R be a convex and differentiable function. Then the following properties are equivalent
characterizations of µ-strong convexity of f :

∥∇f(x)−∇f(y)∥2 ≥ µ∥x− y∥2 for all x,y ∈ Rd. (A)

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥22 for all x,y ∈ Rd. (B)

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≥ µ

2
∥x− y∥22 for all x,y ∈ Rd. (C)

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ 1

2µ
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd. (D)

⟨∇f(x)−∇f(y),x− y⟩ ≤ 1

µ
∥∇f(x)−∇f(y)∥22 for all x,y ∈ Rd. (E)

Note that all of these conditions can be obtained from the L-smoothness conditions by:

• flipping all the inequality signs, and

• replacing L by µ everywhere

4 Strongly Convex and Smooth Functions Minimization

We can generalize quadratic minimization to a broader class of problems

minimizex f(x)

where f(·) is L-strongly convex and µsmooth, which means 0 ⪯ µI ⪯ ∇2f(x) ⪯ LI for ∀x. Now consider
GD process shown as

xt+1 = xt − ηt∇f(xt).

Convergence rate: if ηt ≡ η = 2
µ+L , then

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2,

where κ = L/µ is condition number and x∗ is optimal solution.

Proof. It is seen from the fundamental theorem of calculus that

∇f(xt) = ∇f(xt)−∇f(x∗) =

(∫ 1

0

∇2f(xτ ) dτ

)
(xt − x∗)
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where xτ = xt+ τ(x∗−xt). Then according to the GD update rule, by subtracting x∗ on both sides, we get

xt+1 − x∗ = xt − x∗ − ηt∇f(xt) = xt − x∗ − ηt

(∫ 1

0

∇2f(xτ ) dτ

)
(xt − x∗)

=

(
I− ηt

∫ 1

0

∇2f(xτ ) dτ

)
(xt − x∗),

taking l2 norm on both sides of the last equation, we get

∥xt+1 − x∗∥2 = ∥
(
I− ηt

∫ 1

0

∇2f(xτ ) dτ

)
(xt − x∗)∥2.

≤ sup
0≤τ≤1

∥I− ηt∇2f(xτ )∥2∥xt − x∗∥2 ≤ L− µ

L+ µ
∥xt − x∗∥2.

The last inequality refers to the quadratic minimization, but it is impossible to get the maximum and
minimum eigenvalue of matrix ∇2f(xτ ) on unknown xτ , so we have replaced them with L and µ respectively,
which also means we set ηt ≡ η = 2

µ+L .
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