Notes for Lecture 4
Scribe: Tingkai Jia
1 Quadratic Minimization
To learn about the convergence rate of GD, we begin with quadratic objective functions
minimize, f(x)= %XTQX ~b'x
for some n X n matrix Q > 0, where V f(x) = Qx + b. Now counsider GD process shown as

Xt+1 = X¢ — Utvf(xt)-

Convergence rate: ifn, =n= m, then
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where A1 (Q) (resp. Ay, (Q)) is the largest (resp. smallest) eigenvalue of Q.
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Proof. First we can easily get the gradient of objective function V f(x) = Qx — b, and the unique optimal
solution is x, = Q™ 'b. Then according to the GD update rule, by subtracting x, on both sides, we get

Xip1 — Xo = X — Xy — V(X)) =% — X — 1 (Qx¢ — b)
=X — X — N Q (%t — x4) = (I =7 Q) (x¢ — X4)
taking I3 norm on both sides of the last equation, we get
[xe41 = xull2 = | (T=mQ) (x¢ — %) [l2 < [T = Q|2 llx¢ — % [[2.

Now we want to get the optimal convergence rate by setting 7,, which means minimizing the max eigenvalue
of matrix I—n;Q (For a symmetric positive definite matrix, the singular values are equal to the eigenvalues).
Then we observe that

IT—n:Ql2 = max {|1 — n: A1 (Q)], |1 — m:An(Q)|} = M’

the last equation means we set ny =n = m to make these two terms equal. O

2 Equivalent characterizations of L-smoothness

Let f : RY — R be a convex and differentiable function. Then the following properties are equivalent
characterizations of L-smoothness of f:

IVf(x) = Vf(¥)ll2 < Llx -yl for all x,y € R%. (A)
(Vfx)—Vfy).x—y) <L|x—yl3 for all x,y € R%. (B)
1) = £ = (V) y = %) < Zllx - I for all x,y € RY. ©)
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F(¥) ~ 60 ~ (VI ).y %) > 5976~ V)3 forall x,y cRL (D)
(VI ~ Vi) x—¥) > TIVI) - Vi)B for all x,y € R, ()
Proof A = B: By Cauchy-Schwartz, we have
(VI() = VI),x~¥) < VS0 = TSl =yl < Ll -y
Proof B = C: Define the function G : [0,1] — R as
G(t) 1= Fx+ty —x)) — F() — (VF(x), ty —x),

so that G(0) = 0 and G(1) = f(y) — f(x) — (Vf(x),y — x). By the fundamental theorem of calculus, we
have

G(U—G(O):/O G’(t>dt:/0 (Vf(x+t(y —x)) — Vf(x),y — x)dt.
= [ (@t tly = 20) = VG0 ty =) 7

2 ! L 2
<Lly-xJ | tat=5ly -l
0

Proof C'= D: We begin with a useful auxiliary lemma:

Lemma 1. Consider a differentiable function g : RY — R satisfying condition (C) and with its global
minimum achieved at some v*. Then

g(v) — g(v*) > iLHVg( JIE for all v € RY.

Proof. We have
ov") = inf o) < inf, {av) + (Va(hu=v) + Fv - ult}

ueRd ueRd

= 4(v) — 571993

where the last step follows by showing that the minimum of the quadratic program over u is achieved at
ut=v-— ng( ), and then performing some algebra.
Note: This lemma and its proof are of independent interest, as they show how gradient descent with step
size 1/L can be thought of as minimizing a linear approximation along with a quadratic regularization term
scaled by L/2.

Let us now show that C' = D. For a fixed x € R?, define the function

92(2) = f(z) = (V[ (x),2).

Note that g, is convex, differentiable and minimized when z = x, and it satisfies our smoothness condition.
Hence, the preceding lemma with v* = x and v = y implies that

1 9o 1 2
92(y) — 9= (%) > 7||ng( vz = E”Vf(}’) V)2
A little bit of calculation shows that

92(¥) = 92(%) = f(y) = f(x) = (Vf(x),y = x),

which completes the proof. O



Proof D = E: We have

F¥) = £6) = (V1G9)y = %) 2 5 IVF G0~ VI for all x,y € B,

F9) = F60 = (T, y = x) < 5IVSG) — VIW)IE for all x,y € R,

Adding these inequalities yields FE.
Proof F = A: By Cauchy-Schwartz, we have

(VI(y) = Vix),y —x) <[[Vf(y) = VI)l2llx = yl2.

3 Equivalent characterizations of u-strong convexity

Let f : R — R be a convex and differentiable function. Then the following properties are equivalent
characterizations of u-strong convexity of f:

IVf(x) =Vl = plx =yl for all x,y € R%. (A)
(Vi) = V), x—y) > pullx —yll3 for all x,y € R?. (B)
fy) = fx) = (VIf(x),y —x) = gllx—yllé for all x,y € R%. ()
fly) = f(x) = (Vf(x),y —x) < i”vf(x) Vil for all x,y € R%. (D)
(V1) = V()% =¥) < £[V16) = VDI for all x,y € RY, ()

Note that all of these conditions can be obtained from the L-smoothness conditions by:
e flipping all the inequality signs, and

e replacing L by u everywhere

4 Strongly Convex and Smooth Functions Minimization
We can generalize quadratic minimization to a broader class of problems
minimize, f(x)

where f(-) is L-strongly convex and psmooth, which means 0 < uI < V2f(x) < LI for Vx. Now consider
GD process shown as

Xey1 = X¢ — NV f(Xe).

Convergence rate: ifn, =7 = ;H%’ then

t
k—1
[[x: — X2 < (KJr ) X0 — X |l2;

where k = L/u is condition number and x, is optimal solution.

Proof. 1t is seen from the fundamental theorem of calculus that

V) = V) - 10x) = ([ 1 v2f<xf>d7) (¢ — x.)



where x; = x; + 7(x.« — X¢). Then according to the GD update rule, by subtracting x, on both sides, we get

1
Xipl — Xe = X — X — NV [(Xg) =X — X — 1 (/ V2 f(x,) dT) (x¢ — x4)
0

= (I—m /01 V2f(xr)d7) (%t —x.),

taking /3 norm on both sides of the last equation, we get

1
X410 = Xull2 = || (I - nt/o V2 f(xr) dT) (%t = %) [2-

< sup [[T=nV2F(xr)|l2llxe — x|z < 7
0<r<1 +

I
1%t = X2
I

The last inequality refers to the quadratic minimization, but it is impossible to get the maximum and
minimum eigenvalue of matrix V2 f(x,) on unknown X, so we have replaced them with L and p respectively,

which also means we set 7, =n = L [
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