Notes for Lecture 4

Scribe: Tingkai Jia

1 Quadratic Minimization

To learn about the convergence rate of GD, we begin with quadratic objective functions

$$
\mathbf{minimize}_{\mathbf{x}} \quad f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}
$$

for some $n \times n$ matrix $\mathbf{Q} \succ 0$, where $\nabla f(\mathbf{x}) = \mathbf{Q}\mathbf{x} + \mathbf{b}$. Now consider GD process shown as

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t).
$$

Convergence rate: if $\eta_t \equiv \eta = \frac{2}{\lambda_1(Q) + \lambda_n(Q)}$, then

$$
\|\mathbf{x}_{t}-\mathbf{x}_{*}\|_{2} \leq \left(\frac{\lambda_{1}\left(\mathbf{Q}\right)-\lambda_{n}\left(\mathbf{Q}\right)}{\lambda_{1}\left(\mathbf{Q}\right)+\lambda_{n}\left(\mathbf{Q}\right)}\right)^{t} \|\mathbf{x}_{0}-\mathbf{x}_{*}\|_{2},
$$

where $\lambda_1(\mathbf{Q})$ (resp. $\lambda_n(\mathbf{Q})$) is the largest (resp. smallest) eigenvalue of **Q**.

Proof. First we can easily get the gradient of objective function $\nabla f(\mathbf{x}) = \mathbf{Q}\mathbf{x} - \mathbf{b}$, and the unique optimal solution is $x_* = Q^{-1}b$. Then according to the GD update rule, by subtracting x_* on both sides, we get

$$
\mathbf{x}_{t+1} - \mathbf{x}_{*} = \mathbf{x}_{t} - \mathbf{x}_{*} - \eta_{t} \nabla f(\mathbf{x}_{t}) = \mathbf{x}_{t} - \mathbf{x}_{*} - \eta_{t} (\mathbf{Q} \mathbf{x}_{t} - \mathbf{b})
$$

$$
= \mathbf{x}_{t} - \mathbf{x}_{*} - \eta_{t} \mathbf{Q} (\mathbf{x}_{t} - \mathbf{x}_{*}) = (\mathbf{I} - \eta_{t} \mathbf{Q}) (\mathbf{x}_{t} - \mathbf{x}_{*}),
$$

taking l_2 norm on both sides of the last equation, we get

$$
\|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2 = \|\left(\mathbf{I} - \eta_t \mathbf{Q}\right)(\mathbf{x}_t - \mathbf{x}_*)\|_2 \le \|\mathbf{I} - \eta_t \mathbf{Q}\|_2 \|\mathbf{x}_t - \mathbf{x}_*\|_2.
$$

Now we want to get the optimal convergence rate by setting η_t , which means minimizing the max eigenvalue of matrix $I - \eta_t \mathbf{Q}$ (For a symmetric positive definite matrix, the singular values are equal to the eigenvalues). Then we observe that

$$
\|\mathbf{I} - \eta_t \mathbf{Q}\|_2 = \max\left\{|1 - \eta_t \lambda_1(\mathbf{Q})|, |1 - \eta_t \lambda_n(\mathbf{Q})|\right\} = \frac{\lambda_1(\mathbf{Q}) - \lambda_n(\mathbf{Q})}{\lambda_1(\mathbf{Q}) + \lambda_n(\mathbf{Q})},
$$

the last equation means we set $\eta_t \equiv \eta = \frac{2}{\lambda_1(Q) + \lambda_n(Q)}$ to make these two terms equal.

2 Equivalent characterizations of L-smoothness

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex and differentiable function. Then the following properties are equivalent characterizations of L -smoothness of f :

$$
\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2
$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. (A)

$$
\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le L \|\mathbf{x} - \mathbf{y}\|_2^2 \qquad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{B}
$$

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{C}
$$

 \Box

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge \frac{1}{2L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2 \qquad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{D}
$$

$$
\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{1}{L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{E}
$$

Proof $A \Rightarrow B$: By Cauchy-Schwartz, we have

$$
\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le ||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})||_2 ||\mathbf{x} - \mathbf{y}||_2 \le L ||\mathbf{x} - \mathbf{y}||_2^2.
$$

Proof $B \Rightarrow C$: Define the function $G : [0,1] \rightarrow \mathbb{R}$ as

$$
G(t) := f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), t(\mathbf{y} - \mathbf{x}) \rangle,
$$

so that $G(0) = 0$ and $G(1) = f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$. By the fundamental theorem of calculus, we have

$$
G(1) - G(0) = \int_0^1 G'(t) dt = \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt.
$$

=
$$
\int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), t(\mathbf{y} - \mathbf{x}) \rangle \frac{1}{t} dt.
$$

$$
\leq L \|\mathbf{y} - \mathbf{x}\|_2^2 \int_0^1 t dt = \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2.
$$

Proof $C \Rightarrow D$: We begin with a useful auxiliary lemma:

Lemma 1. Consider a differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ satisfying condition (C) and with its global minimum achieved at some v^* . Then

$$
g(\mathbf{v}) - g(\mathbf{v}^*) \ge \frac{1}{2L} \|\nabla g(\mathbf{v})\|_2^2
$$
 for all $\mathbf{v} \in \mathbb{R}^d$.

Proof. We have

$$
g(\mathbf{v}^*) = \inf_{\mathbf{u} \in \mathbb{R}^d} g(\mathbf{u}) \le \inf_{\mathbf{u} \in \mathbb{R}^d} \left\{ g(\mathbf{v}) + \langle \nabla g(\mathbf{v}), \mathbf{u} - \mathbf{v} \rangle + \frac{L}{2} ||\mathbf{v} - \mathbf{u}||_2^2 \right\}
$$

$$
= g(\mathbf{v}) - \frac{1}{2L} ||\nabla g(\mathbf{v})||_2^2,
$$

where the last step follows by showing that the minimum of the quadratic program over **u** is achieved at $\mathbf{u}^* = \mathbf{v} - \frac{1}{L} \nabla g(\mathbf{v})$, and then performing some algebra.

Note: This lemma and its proof are of independent interest, as they show how gradient descent with step size $1/L$ can be thought of as minimizing a linear approximation along with a quadratic regularization term scaled by $L/2$.

Let us now show that $C \Rightarrow D$. For a fixed $\mathbf{x} \in \mathbb{R}^d$, define the function

$$
g_x(\mathbf{z}) = f(\mathbf{z}) - \langle \nabla f(\mathbf{x}), \mathbf{z} \rangle.
$$

Note that g_x is convex, differentiable and minimized when $z = x$, and it satisfies our smoothness condition. Hence, the preceding lemma with $\mathbf{v}^* = \mathbf{x}$ and $\mathbf{v} = \mathbf{y}$ implies that

$$
g_x(\mathbf{y}) - g_x(\mathbf{x}) \ge \frac{1}{2L} \|\nabla g_x(\mathbf{y})\|_2^2 = \frac{1}{2L} \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|_2^2.
$$

A little bit of calculation shows that

$$
g_x(\mathbf{y}) - g_x(\mathbf{x}) = f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle,
$$

which completes the proof.

 \Box

Proof $D \Rightarrow E$: We have

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge \frac{1}{2L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2
$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{1}{2L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2 \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.
$$

Adding these inequalities yields E.

Proof $E \Rightarrow A$: By Cauchy-Schwartz, we have

$$
\langle \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq ||\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})||_2 ||\mathbf{x} - \mathbf{y}||_2.
$$

3 Equivalent characterizations of μ -strong convexity

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex and differentiable function. Then the following properties are equivalent characterizations of μ -strong convexity of f :

$$
\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \ge \mu \|\mathbf{x} - \mathbf{y}\|_2
$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. (A)

$$
\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \mu \|\mathbf{x} - \mathbf{y}\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{B}
$$

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{C}
$$

$$
f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{1}{2\mu} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{D}
$$

$$
\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le \frac{1}{\mu} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^d. \tag{E}
$$

Note that all of these conditions can be obtained from the L-smoothness conditions by:

- flipping all the inequality signs, and
- replacing L by μ everywhere

4 Strongly Convex and Smooth Functions Minimization

We can generalize quadratic minimization to a broader class of problems

minimize_x $f(\mathbf{x})$

where $f(\cdot)$ is L-strongly convex and μ smooth, which means $0 \leq \mu I \leq \nabla^2 f(x) \leq L I$ for $\forall x$. Now consider GD process shown as

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t).
$$

Convergence rate: if $\eta_t \equiv \eta = \frac{2}{\mu + L}$, then

$$
\|\mathbf{x}_t - \mathbf{x}_*\|_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|\mathbf{x}_0 - \mathbf{x}_*\|_2,
$$

where $\kappa = L/\mu$ is condition number and \mathbf{x}_{*} is optimal solution.

Proof. It is seen from the fundamental theorem of calculus that

$$
\nabla f(\mathbf{x}_t) = \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_*) = \left(\int_0^1 \nabla^2 f(\mathbf{x}_\tau) d\tau\right) (\mathbf{x}_t - \mathbf{x}_*)
$$

where $\mathbf{x}_{\tau} = \mathbf{x}_{t} + \tau(\mathbf{x}_{*} - \mathbf{x}_{t})$. Then according to the GD update rule, by subtracting \mathbf{x}_{*} on both sides, we get

$$
\mathbf{x}_{t+1} - \mathbf{x}_{*} = \mathbf{x}_{t} - \mathbf{x}_{*} - \eta_{t} \nabla f(\mathbf{x}_{t}) = \mathbf{x}_{t} - \mathbf{x}_{*} - \eta_{t} \left(\int_{0}^{1} \nabla^{2} f(\mathbf{x}_{\tau}) d\tau \right) (\mathbf{x}_{t} - \mathbf{x}_{*})
$$

$$
= \left(\mathbf{I} - \eta_{t} \int_{0}^{1} \nabla^{2} f(\mathbf{x}_{\tau}) d\tau \right) (\mathbf{x}_{t} - \mathbf{x}_{*}),
$$

taking l_2 norm on both sides of the last equation, we get

$$
\|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2 = \|\left(\mathbf{I} - \eta_t \int_0^1 \nabla^2 f(\mathbf{x}_\tau) d\tau\right) (\mathbf{x}_t - \mathbf{x}_*)\|_2.
$$

$$
\leq \sup_{0 \leq \tau \leq 1} \|\mathbf{I} - \eta_t \nabla^2 f(\mathbf{x}_\tau)\|_2 \|\mathbf{x}_t - \mathbf{x}_*\|_2 \leq \frac{L - \mu}{L + \mu} \|\mathbf{x}_t - \mathbf{x}_*\|_2.
$$

The last inequality refers to the quadratic minimization, but it is impossible to get the maximum and minimum eigenvalue of matrix $\nabla^2 f(\mathbf{x}_\tau)$ on unknown \mathbf{x}_τ , so we have replaced them with L and μ respectively, which also means we set $\eta_t \equiv \eta = \frac{2}{\mu + L}$.