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1 The Convexity of ∥x∥
The function ∥x∥ of a norm of x is a convex function.

Proof. Consider any vector x,y, by the property of norm, we have

∥θx+ (1− θ)y ≥ ∥θx∥+ ∥(1− θ)y∥ = θ∥x∥+ (1− θ)∥y∥.

Thus the function ∥x∥ is convex.

2 First-order Condition of Convex Functions

Lemma 1. Let f(x) be a convex function. For any vector h, we have

⟨∇f(x),h⟩ = lim
t→0+

f(x+ th)− f(x)

t
.

Proof. Let q(t) = f(x+ th). By applying the chain rule, we obtain

q′(t) = ⟨∇f(x+ th),h⟩.

Consider when t = 0, we get

q′(0) = lim
t→0

q(t)− q(0)

t
= lim

t→0

f(x+ th)− f(x)

t
,

also

q′(0) = ⟨∇f(x),h⟩ = lim
t→0

f(x+ th)− f(x)

t
,

the proof is thus complete.

Theorem 1 (first-order condition). Suppose f is differentiable and has convex domain, then f is convex if
and only if

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩
holds for all x,y ∈ domf .

Proof. Consider any x,y, we first obtain

αf(y) + (1− α)f(x) ≥ f(αy + (1− α)x)

α[f(y)− f(x)] ≥ f(x+ α(y − x))− f(x)

By taking the limit as α approaches 0 in above last inequality, we obtain the following inequality

f(y)− f(x) ≥ lim
α→0+

f(x+ α(y − x))− f(x)

α

f(y)− f(x) ≥ ⟨∇f(x),y − x⟩
The last inequality uses Lemma 1, and we have thus proved the property.



3 Second-order Condition of Convex Functions

Theorem 2 (second-order condition). Let f : Rd → R be a twice differentiable function. Suppose that
∇2f(·) is continuous in an open neighborhood of x∗ ∈ Rd.

1. If x∗ is a local minimizer of f(·), then it holds that

∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0

2. If it holds that
∇f(x∗) = 0 and ∇2f(x∗) ≻ 0

then the point x∗ is a strict local minimizer of f(·)

Proof. Part I: Suppose ∇f(x∗) ̸= 0. We define

p = −∇f(x∗),

which means ⟨p,∇f(x∗)⟩ < 0. The continuity of ∇f(·) means there exists some T > 0 such that

⟨p,∇f(x∗ + tp)⟩ < 0

for any t ∈ (0, T ]. For any t, Taylor’s theorem means there exist some t ∈ (0, t̂) such that

f(x∗ + tp) = f(x∗) + t⟨p,∇f(x∗ + tp)⟩ < f(x∗),

which leads to contradiction. Hence ∇f(x∗) = 0.
Suppose∇f(x∗) is not positive semi-definite. Then we can find some p ∈ Rd such that ⟨∇2f(x∗)p,p⟩ < 0.

The continuity of Hessian means there exists some T > 0 such that for any t ∈ [0, T ] holds that

⟨∇2f(x∗ + tp)p,p⟩ < 0.

Doing Taylor expansion around x∗, we have for all t ∈ (0, T ], there exist some t ∈ (0, t̂) such that

f(x∗ + t̂p) = f(x∗) + t⟨p,∇f(x∗)⟩+ 1

2
t2⟨∇2f(x∗ + tp)p,p⟩ < f(x∗),

which leads to contradiction. Hence ∇f(x∗) should be positive semi-definite.
Part II: The continuity of Hessian means the positive definiteness of Hessian still hold in B(x∗, δ) for

some δ > 0. For any p ∈ Rd with ∥p∥2 ≤ δ, then we have

f(x∗ + p) = f(x∗) + ⟨p,∇f(x∗)⟩+ 1

2
pT∇2(x∗ + tp)p > f(x∗)

for some t ∈ (0, 1), which leads to contradiction. The point x∗ is a strict local minimizer.

4 Epigraph Theorem of Convex Functions

Theorem 3. A function f(x) is convex if and only if its epigraph is a convex set.

Proof. Part I: Suppose f : C → R is convex. Let (x1, u1) and (x2, u2) in

epif ≜ {(x, u) ∈ C × R : f(x) ≤ u} .

For any α ∈ [0, 1], the point

α(x1, u1) + (1− α)(x2, u2) = (αx1 + (1− α)x2, αu1 + (1− α)u2)
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satisfies
f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αu1 + (1− α)u2,

where the last inequality use the convexity of f and the second one is due to (x1, u1) and (x2, u2) in epif .
Hence, the point α(x1, u1) + (1− α)(x2, u2) also in epif , which means the epigraph is convex.
Part II: Suppose the epigraph

epif ≜ {(x, u) ∈ C × R : f(x) ≤ u} .

is convex. It is easy to see C is convex by fixing some u. Let x1,x2 ∈ C, u1 = f(x1) and u2 = f(x2). The
convexity of epigraph means

α(x1, u1) + (1− α)(x2, u2) = (αx1 + (1− α)x2, αu1 + (1− α)u2) ∈ epif,

which leads to
f(αx1 + (1− α)x2) ≤ αu1 + (1− α)u2 = αf(x1) + (1− α)f(x2).

5 A Property of Convex Functions

Lemma 2 (Supporting Hyperplane Theorem). Let X ⊆ Rd is a convex set and x0 belongs to its boundary.
Then, there exists a nonzero vector w ∈ Rd such that

⟨w,x⟩ ≤ ⟨w,x0⟩.

Theorem 4. The convex function has the following properties

1. If any x ∈ domf satisfies ∂f(x) ̸= ∅, then f is convex.

2. If f : Rd → R is convex and x belongs to the interior of domf , then ∂f(x) ̸= ∅.

Proof. Part I: We first check the sum rule (one side) of subgradient. For any x1,x2 ∈ domf ⊆ Rd and
α ∈ [0, 1], there exist g1,g2 ∈ Rd such that

f(z) ≥ f(x1) + ⟨g1, z− x1⟩ and f(z) ≤ f(x2) + ⟨g2, z− x2⟩

for any z ∈ Rd, which leads to

f(z) ≥ αf(x1) + (1− α)f(x2) + ⟨αg1 + (1− α)g2, z− (αx1 + (1− α)x2)⟩

≥ f(αx1 + (1− α)x2) + ⟨αg1 + (1− α)g2, z− (αx1 + (1− α)x2)⟩.

Let g = αg1 + (1−α)g2, above inequality means g ∈ ∂f(αx1 + (1−α)x2). The definition of subdifferential
means for any x1,x2, we have

f(x1) ≥ f(αx1 + (1− α)x2) + ⟨g,x1 − (αx1 + (1− α)x2)⟩

= f(αx1 + (1− α)x2) + ⟨g, (1− α)(x1 − x2)⟩

and
f(x2) ≤ f(αx1 + (1− α)x2) + ⟨g,x2 − (αx1 + (1− α)x2)⟩

= f(αx1 + (1− α)x2) + ⟨g, α(x2 − x1)⟩.

Weighted summing over the above inequality obtains

αf(x1) + (1− α)f(x2) ≥ f(αx1 + (1− α)x2).
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Part II: Consider that (x, f(x)) is on the boundary of epif . The hyperplane supporting theorem (Lemma
2) say there exists (a, b) with a ̸= 0 such that〈[

a
b

]
,

[
y − x

t− f(x)

]〉
≤ 0

for any (y, t) ∈ epif . That is
⟨a,y − x⟩+ b(t− f(x)) ≤ 0.

We can conclude b ≤ 0. Otherwise, let t → +∞ (t can be arbitrary large for fixed x,y and a) leads to LHS
tends to +∞. Since x is in the interior, we can find some ϵ > 0 such that y = x+ ϵa ∈ domf , which leads
to LHS be −ϵ∥a∥22. It means b ̸= 0. Hence we can say b < 0 and dividing by b obtains

⟨a
b
,y − x⟩+ (t− f(x)) ≥ 0 ⇐⇒ t ≥ f(x) + ⟨−a

b
,y − x⟩.

Taking t = f(y) means g = −a
b is a subgradient at x.

6 Some Examples of Convex Functions

Here are three different functions and the process of determining their convexity using the Hessian matrix.

Example 1. x ∈ Rn, f : Rn → R, f(x) = ∥Ax− b∥2

∇2f(x) = 2A⊤A

x⊤∇2f(x)x = 2(Ax)⊤(Ax) ⪰ 0.

The Hessian matrix of f(x) is a positive semi-definite matrix, which means it is a convex function.

Example 2. x ∈ R, y ∈ R, f(x, y) = x2

y

∇2f(x) =

[
∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

]
=

[
2
y − 2x

y2

− 2x
y2

2x2

y3

]
=

2

y3

[
y2 −xy
−xy x2

]
[
y2 −xy
−xy x2

]
=

[
y
−x

]
(y,−x) ⪰ 0.

The Hessian matrix of f(x) is a positive semi-definite matrix, which means it is a convex function.

Example 3. x ∈ Rm, f(x) = ln
(∑n

i=1 exp(a
⊤
i x+ bi)

)
.

∇f(x) = A⊤ 1∑n
i=1 exp(a

⊤
i x+ bi)


exp(a⊤1 x+ b1)
exp(a⊤2 x+ b2)

...
exp(a⊤nx+ bn)

 =
1

1⊤z
A⊤z,

where zi = exp(a⊤i x+ bi).

∇2f(x) =
1

1⊤z
diag(z)− 1

(1⊤z)2
z · z⊤

x⊤∇2f(x)x =
1

1⊤z

n∑
i=1

zix
2
i −

1

(1⊤z)2

n∑
i=1

(zixi)
2
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=
1

(1⊤z)2

(
n∑

i=1

zix
2
i

n∑
i=1

zi −
n∑

i=1

(zixi)
2

)
≥ 0,

the last inequality applies the Cauchy-Schwarz inequality, where

u =


z1x

2
1

z2x
2
2

...
znx

2
n

 ,v =


z1
z2
...
zn

 ,

∥u∥1∥v∥1 − |u⊤v| =
n∑

i=1

zix
2
i

n∑
i=1

zi −
n∑

i=1

(zixi)
2 ≥ 0.

The Hessian matrix of f(x) is a positive semi-definite matrix, which means it is a convex function.

7 Subgradient of Differentiable Functions

Theorem 5. If a function is differentiable, the only subgradient at each point is the gradient, i.e.,

∂f(x) = {∇f(x)} .

Proof. For any x,y, let g be a subgradient of x, we first obtain

f(y) ≥ f(x) + ⟨g,y − x⟩.

Let y − x = th, we then get
f(x+ th) ≥ f(x) + ⟨g, th⟩
f(x+ th)− f(x)

t
≥ ⟨g,h⟩,

By taking the limit as t approaches 0 in above last inequality, we obtain the following inequality

lim
t→0

f(x+ th)− f(x)

t
= ⟨∇f(x),h⟩ ≥ ⟨g,h⟩

⟨∇f(x)− g,h⟩ ≥ 0,

the first equation comes from Lemma 1. For the last inequality, we find that if and only if ∇f(x) = g, the
inequality can holds for any vector h, thus we finish the proof.

8 Basic Rules of Subgradient

In this part, we first show basic rules of subgradient operation, and then illustrate some functions to analyze
its subdifferential, during which we may use these rules.

• Scaling: ∂(αf) = α∂f (for α > 0)

• Summation: ∂(f1 + f2) = ∂f1 + ∂f2.

• Affine Transformation: if h(x) = f(Ax+ b), then

∂h(x) = A⊤∂f(Ax+ b).
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• Chain Rule: suppose f is convex, and g is differentiable, nondecreasing, and convex. Let h = g ◦ f ,
then

∂h(x) = g′(f(x))∂f(x).

• Composition: suppose f(x) = h(f1(x), · · · , fn(x)), where fi’s are convex, and h is differentiable,
nondecreasing, and convex. Let q = ∇h(y)|y=[f1(x),··· ,fn(x)], and gi ∈ ∂fi(x). Then

q1g1 + · · ·+ qngn ∈ ∂f(x).

• Pointwise Maximum: if f(x) = max1≤i≤k fi(x), then

∂f(x) = conv {∪ {∂fi(x)|fi(x) = f(x)}} .

• Pointwise Supremum: if f(x) = supα∈Ffα(x), then

∂f(x) = closure (conv {∪ {∂fα(x)|fα(x) = f(x)}}) .

Example 4 (the l1 norm). x ∈ Rn, f(x) = ∥x∥1 =
∑n

i=1|xi|.

Let fi(x) = |xT · ei| = |xi|, then we obtain

f(x) =

n∑
i=1

|xi| =
n∑

i=1

fi(x).

Consider the summation rule of subgradient, we can see ∂f(x) =
∑n

i=1 ∂fi(x), then

∂fi(x) =

{
sgn(xi)ei, if xi ̸= 0

[−1, 1] · ei, if xi = 0

now we have

∂f(x) =

{
g

∣∣∣∣∣gi = sgn(xi), if xi ̸= 0

gi ∈ [−1, 1], if xi = 0

}
.

Example 5. x ∈ Rn, h(x) = ∥Ax+ b∥1 =
∑n

i=1|a⊤i x+ bi|.

Let h(x) = f(Ax+ b), it follows that f(x) = ∥x∥1. Consider the affine transformation rule of subgradient,
we can see ∂h(x) = ∂f(Ax+ b), then we have

g =
∑

i:a⊤
i x+bi ̸=0

sgn(a⊤i x+ bi)ei ∈ ∂f(Ax+ b),

which means
ATg =

∑
i:a⊤

i x+bi ̸=0

sgn(a⊤i x+ bi)ai ∈ ∂h(x).

It should be noted that the final set we get is actually part of the subdifferential, because we did not consider
cases when a⊤i x+ bi = 0 instead of setting a default 0, which still belongs to the subdifferential of hi(x). In
the actual running of gradient descent algorithm, we have no need to obtain the complete subdifferential of
function, a practical subgradient would be enough.

Example 6 (piece-wise linear functions). x ∈ Rn, f(x) = max1≤i≤n{a⊤i x+ bi}.
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Let fi(x) = a⊤i x+ bi, then we obtain

f(x) = max
1≤i≤n

{a⊤i x+ bi} = max
1≤i≤n

fi(x).

Consider that it satisfies the pointwise maximum situation, then pick any aj s.t. a
⊤
j x+bj = maxi{a⊤i x+bi},

we have
aj ∈ ∂f(x).

Example 7 (the l∞ norm). x ∈ Rn, f(x) = ∥x∥∞ = max1≤i≤n|xi|.

Let fi(x) = |x⊤ei| = |xi|, then we obtain

f(x) = max
1≤i≤n

|xi| = max
1≤i≤n

fi(x).

Consider that it satisfies the pointwise maximum situation, then if x ̸= 0, pick any xj obeying |xj | = maxi|xi|,
we obtain

sgn(xj)ej ∈ ∂f(x).
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