Homework 2

Deadline: October 9th

Problem 1. Which of the following sets are convex?

- (a) A slab, i.e., a set of the form $\{\mathbf{x} \in \mathbb{R}^n | \alpha \leq \mathbf{a}^T \mathbf{x} \leq \beta\}$.
- (b) The set of points closer to a given point than a given set, i.e., $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_0\|_2 \leq \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{y} \in S\}$ where $S \subseteq \mathbb{R}^n$.
- (c) The set of points closer to one set than another, i.e., $\{\mathbf{x}|\mathbf{dist}(\mathbf{x},S) \leq \mathbf{dist}(\mathbf{x},T)\}$ where $S,T \subseteq \mathbb{R}^n$, and $\mathbf{dist}(\mathbf{x},S) = \inf\{\|\mathbf{x}-\mathbf{z}\|_2|\mathbf{z}\in S\}$.
- (d) The set of points whose distance to **a** does not exceed a fixed fraction θ of the distance to **b**, i.e., the set $\{\mathbf{x}|\|\mathbf{x} \mathbf{a}\|_2 \le \theta \|\mathbf{x} \mathbf{b}\|_2\}$ ($\mathbf{a} \ne \mathbf{b}$ and $0 \le \theta \le 1$).

Problem 2. Judge which of the following functions are (strict) convex.

- (a) $f(x) = e^x 1$.
- (b) $f(x_1, x_2) = x_1 x_2, x_1 > 0, x_2 > 0.$
- (c) $f(x_1, x_2) = 1/(x_1x_2), x_1 > 0, x_2 > 0.$
- (d) $f(x_1, x_2) = x_1^2/x_2, x_2 > 0.$

Problem 3. Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only of for every $\mathbf{x} \neq \mathbf{y} \in \text{dom} f$, the function $g(t) = f(t\mathbf{x} + (1-t)\mathbf{y})$ is a convex function on [0,1].

Problem 4. Prove that if f is a convex function, then for all \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 , and a_1 , a_2 and $a_3 \in (0,1)$ such that $a_1 + a_2 + a_3 = 1$, we have

$$\langle \nabla f(\mathbf{x}_3), a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 - (1 - a_3) \mathbf{x}_3 \rangle \le a_1 f(\mathbf{x}_1) + a_2 f(\mathbf{x}_2) - (1 - a_3) f(\mathbf{x}_3).$$