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Empirical Risk Minimization

Let {aj, bj}"_; be n random samples. In machine learning, we usually learn
model parameters x by optimizing

min F(x Zf ;{aj, bi}).

xeRd
@ hinge loss (support vector machine):
f(x;{a;, b;}) = max{1 — b;a, x,0}
o logistic loss (logistic regression):
f(x; {a;, bi}) = log(1 + exp(—b;a; x))

@ neural network
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Stochastic Optimization

More generally, we consider the stochastic optimization problem

min F(x) £ Ee[f(x; )]
xeRY —_———
expectation setting

where the random variable £ ~ D.

@ £ is the randomness in problem.

@ In this lecture, we suppose f(+, &) is convex for all £, and thus F(x) is
convex.
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Finite-sum Setting

The finite-sum setting is a special case of the expectation setting:
1 n
A = 5 30,
=

If one draws index i from {1,2,..., n} uniformly at random, then

F(x) = Eilfi(x)]-
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A Natural Idea

Xty1 = X¢ — ntvF(Xt)
= xt — Nt VE[f(X¢, §)]
= X; — ntE[fo(Xt, f)]

issues:
@ For the expectation setting, distribution of & may be unknown.

@ For the finite-sum setting, computing full gradient is very expensive
when n is very large.
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Stochastic Gradient Descent (SGD)

Stochastic gradient descent:

Xt4+1 = Xt — ntg(xt7£)7

where g(x¢, &) is an unbiased estimator of VF(x;), i.e.,

Elg(xt,§)] = VF(x:).

For the finite-sum setting, we can choose index i from {1,2,...,n}
uniformly at random. Then Vf;,(x;) is an unbiased estimator of V F(x;).
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Strongly convex and smooth problems

min F(x) £ E¢[f(x; )]
xeRd
Assumptions:
@ F is L-smooth and p-strongly convex;
e Given &, ..., &1, g(x¢, &) is an unbiased estimator of VF(x;);
e For all x, we have JE[Hg(x,g)HS] <o

bounded variance
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Convergence with fixed stepsizes

Under the assumptions in page 7, if ny =n < 1/(2L), then SGD achieves

*2 t *2 7702
Efllxe —x*[)2] < (1 = 2nu)" [Ixo — x*|I3 + e
o fast (linear) convergence at the very beginning
@ converges to some neighborhood of x*

@ smaller stepsize 7 yield better converging points
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One Practical Strategy

Run SGD with fixed stepsizes; whenever progress stalls, half the stepsize
and continue SGD.
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Convergence with diminishing stepsizes

Under the assumptions in page 7, if ny =n <
SGD achieves

t+1 for some 6 > 2 , then

Qg

Efx —x'[B) < 55

2 2
where g = max{||xo — |3, 230 1}
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Convex and Smooth Problems

Suppose we return a weighted average

If F is convex, we have

E[F (%) — F(x*)] < %0 — quij 237/; el
0

If we choose 7; = ©(1/4/t), we can get

logt

E[F (%) — F(x")] < O( NG

).
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Stochastic Variance Reduced Gradient (SVRG)

If we have access to a history point X and VF(X), how to build a unbiased
gradient estimator with converges to 07

Vii(xt) = VA(x) + VF(X)
——

—0 if xgrX —0 if x~x*

where i is randomly sampled from {1,..., n}.

@ an unbiased estimator of F(X)

@ converges to 0 if x; =~ X ~ x*
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Stochastic Variance Reduced Gradient (SVRG)

@ operate in epochs
@ in the s-th epoch

o beginning: take a snapshot X of the current iterate, and compute the
batch gradient

VF(X) = % > V).
i=1

e inner loop: use the snapshot point to help reduce variance

xer1 = Xt — N:(VHi(xt) — V(%) + VF(X)),
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Stochastic Variance Reduced Gradient (SVRG)

Algorithm 1 Stochastic Variance Reduced Gradient
1: Input: xo, 7, m, S

2: )?(0) = Xp

3: fors=0,...,5-1

4 Xg = i(s)

5 fort=0,...,m—1

6: draw i from {1,..., n} uniformly at random

7 xepr = xe — (Vi (xe) — VES)) + V),

8: end for

9:  Option I: X6t = x,,

10:  Option II: X511 = x, for randomly chosen t € {0,...,m—1}
11: end for

12: Output: (5
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Remark

@ constant stepsize 7

@ each epoch contains 2m + n gradient computations
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Stochastic Variance Reduced Gradient (SVRG)

Assume 1 = ©(1/L) and m = ©(k) is sufficient large so that

= L + 2Ly <1
P=m@ —2Lym " 1-2Lp

then SVRG holds that
E[f(x9) — f(x")] < p*(f(%0) — f(x")).
To achieve
E[f(x)) — f(x*)] <e
we only require at most O((x + n)log(1/€)) number of gradient

computations.
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Summary

min F(x) = =

xcRd

iteration complexity | per-iteration total
batch GD Kk log % n nk log %
SGD i 1 B
SVRG log n+k (n+r)logt

Table: Convergence rate for the strongly convex case

OptML

November 29th, 2023

17/18



Questions

e
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