Optimization for Machine Learning

Plar > FRILAL T

bR 2
IR AR 2 KA TR 2B

chchen@sei.ecnu.edu.cn

OptML v ) R A



Outline

© Momentum Methods

OptML v ) R B



(Proximal) Gradient Methods

Iteration complexities of (proximal) gradient methods

@ strongly convex and smooth problems
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€

@ convex and smooth problems
1
°(2)
€

Can we have better convergence rate?
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Polyak’s Heavy-ball Method

Heavy ball Method (HB):

Xt+1 = Xt — thf(xt) + et(xt - Xt—l)
| ——

momentum term

@ add inertia to the “ball” (i.e. include a momentum term) to mitigate
zigzagging
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Polyak’s Heavy ball Method

heavy-ball method
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Polyak’s Heavy ball Method

Theorem (Convergence of heavy ball methods)

Suppose f is a L-smooth and pi-strongly convex quadratic function. If we

choose e = 4/(VL + \/i1)?, 0; = max{|1 — \/n¢L|, |1 — /7| }? and

k= L/u, then
Xtr1 — x* < VE =1\ [x; — x*
thx* 2_ \/E—I—]. Xofx*

@ only have convergence guarantee for quadratic function

@ significant improvement over GD: O (\/Elog %) vs. O (/ilog %)

2

Can we obtain improvement for more general convex cases as well?
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Nesterov's idea

Nesterov's accelerated gradient (NAG) method:

Ye = Xt + 0¢(xe — X¢—1)
Xt41 = Yt — ﬁtVf(Yt)

@ alternates between gradient updates and proper extrapolation
@ not a descent method (i.e. we may not have f(x¢41) < f(x¢))

@ one of the most beautiful and mysterious results in optimizatio
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Comparison between HB and NAG

X =NV (V)
By »~ T o o, }it Xt+1
Xt i
= 1
NV (Xe)
Xi—1 Xt—1
Heavy ball NAG

Ye = Xt + 0:(X¢ — X¢—1)

Xt+1 = Xt — UtVf(Xt) + Hf(xt B xt_l) { Xt+1 =Yt — ntVf(yt)
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History

@ Polyak invented HB momentum in 1964 (and discussed the physics
analogy)
@ Nesterov invented NAG in 1983
o Even though Nesterov was Polyak's student, he seems not to have
mentioned the physics analogy
o Sutskever et al. (2013)! popularized momentum methods in machine
learning and revived the momentum interpretation.

1On the importance of initialization and momentum in deep learning. ICML 2013.
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Momentum methods for nonconvex problems

loss Movement =

Negative of dL/dw + Last Movement
——p Negative of dL / ow

«=s=p Last Movement

=—p Real Movement

aL/dw =0 \
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Convergence Rate of NAG

Suppose f is p-strongly convex and L-smooth. If we choose ny =n =1/L

and 0 = 0 = Y, then

t—1
) = ) < (1= ) 1) = F0) + 5 I = X[
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Convergence Rate of NAG

Suppose f is convex and L-smooth. If we choose ny =n = 1/L and
0; = )3\2—:11 where \g = 1 and A\yy1 = R Vi 1+4)‘ . Then

t—1
e = F6) < (1= =) [FCa) = F() + 5 o =T

VE

@ A simpler choice the 6; is 0; = ¢t3
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Extension to Composite Models

mingF(x) = f(x) + h(x)

@ f is convex and smooth
@ his convex (may not be differentiable)

@ Let F* = miny F(x) be the optimal value
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FISTA (Beck & Teboulle '09)

Fast iterative shrinkage-thresholding algorithm:

Yt = prox, p(xe + 0e(xe — x¢-1))
Xey1 =Yt — N:VF(ye)

@ has same convergence property as the convex problems

o fast if prox can be efficiently implemented
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© Lower Bounds
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Lower Bounds

Interestingly, no first-order methods can improve upon Nesterov's results
in general.

More precisely, there exists convex and L-smooth function f s.t.

3L %0 — x*|5

flx) =17 = 32(t + 1)

as long as xx € xo + span{Vf(xg),..., Vf(xx_1)} forall 1 < k < t.

definition of first-order methods
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Example

. L/1
(i, f) =4 < ox Ax elTX>
2 -1 1
-1 2 -1
where A = c R(@n+1)x(2n+1)
-1 2 -1
i -1 2]

@ f is convex and smooth

@ the optima x* is given by x/ =1 — 5=
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© Newton and Quasi-Newton Methods
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Newton's Method

Recall that optimizing smooth function f(x) by gradient descent

1
Xtr1 = X¢ — ZVf(xt)

is achieved by minimizing

L
mxin f(xe) + (VF(xe),x — x¢) + >

If we can compute Hessian matrix, we can minimize

2
[ = x>

min f(xe) + (VF(xe), x — X¢) + %(x — X, V2F(x¢) (X — x¢)).

Suppose V2f(x;) is non-singular, then we achieve Newton's method

Xer1 = X¢ — (V2F(x¢)) IV F(xy).
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Quadratic Convergence

Suppose the twice differentiable function f : RY — R has Lo-Lipschitz
continuous Hessian and local minimizer x* with V2f(x*) = ul, then the
Newton's method

xer1 = x¢ — (V2F(xe)) " VF(xe)

with ||xo — x*|, < p/(2L2) holds that

L 2
||Xt+1 - x*H2 < ; ||Xt - X*Hz-

Newton’s method has local quadratic convergence, which requires

T = O(loglog(1/¢))

iterations to achieve ||x7 — x*||, <.
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Standard Newton's Method

Strengths:

@ The quadratic convergence is very fast (even for ill-conditioned case).

Weakness:
© The convergence guarantee is local.
@ Each iteration requires O(d3) time.
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Secant Condition

For quadratic function

Q(x) = %XTAX —b'x,

we have VQ(x¢11) — VQ(x¢) = V2 Q(Xer1)(Xes1 — Xe)-
For general f(x) with Lipschitz continuous Hessian, we have
Vi(xey1) — VF(xe) = sz(xtH)(xtH —X¢) + o([[xe41 — XtH2)7

which leads to

vf(Xt+1) — Vf(xt) ~ V2f(xt+1)(xt+1 — Xt).
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Classical Quasi-Newton Methods
Motivated by
VF(xer1) — VE(xe) & V2 (xep1) (Xe41 — Xe),
classical Quasi-Newton methods target to find G;,1 such that
Vi(xe41) = VE(xe) = Gepa(Xer1 — Xe)
and update the variable as
Xer1 = X — Gy IV F(x,).
We typically take Gg = dpl with some dg > 0.
For given G, or G; !, we hope
Q@ {x:} converges to x* efficiently;

Q G;.; is close to G¢;

© G..1 or G, can be constructed/stored efficiently.
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Woodbury Matrix Identity

The Woodbury matrix identity is
(A+UCV) ' =A"1 - Aly(C 4 VATIU) VAT

where A € R9%9, C € Rk*k U € RY*k and V € Rk*9.

ForA=G,, U=2Z, V=2 and C =1, we let
Gi1 =G+ 2,2/,
then
G L =G'-G;'Z,(1+Z/G;'Z,) 'z G !

can be computed within O(kd?) flops for given G, ..
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Classical SR1 Method

We consider secant condition and the symmetric rank one (SR1) update

Y: = Gii1Se,
Gt+1 = Gt + th;r.
where s; = X¢11 — X and yy = VF(xer1) — VFA(xe).

It implies

(Yt - Gtst)(Yt - Gtst)T
(yt - Gtst)Tst

and the corresponding update to inverse of Hessian estimator is

Gi1 =G, +

Gl _G14 (s — Gilye)(se — G lye) "
t+1 — Mt -1 T '
(st =Gy ye) Ty
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Classical DFP Method

Let G¢;1 be the solution of following matrix optimization problem

cin 1IG = Gellg;

st G=G'", Gs;=y,,

where the weighted norm || - [[g is defined as

1
IAlg, = ||Gr*AG, V2|, with Gt:/o V2f(x¢ 4+ T(Xer1 — x¢)) dr

It implies DFP update

T T

S S
Gt+1_(l y’-‘f)m( ;yf>+y;yf.
y{ st Y: St Y: St

The corresponding update to inverse of Hessian estimator is

-1, yT-1 T
Gl _Ggl_ G: yeye Gy S¢St
t+1 =Lt T-1 Te "
Ye Gt ye Yt St
ORI T
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Classical BFGS Method

Let G;; be the solution of the following matrix optimization problem
amin [IH = Hellg,
st H=H'", Hy,=s,

where H, = G; ! and the weighted norm || - g, is defined as

1
IAllg, = |GY*AG?|| . with Gt:/ V2f(x¢ 4+ T(Xe 1 — %)) dr.
0

It implies BFGS update

1 StYy ) o1 yes, stS;
Goh= (1= )1 Y8 )y 3%
Yt St Y: St Yt St

The corresponding update to Hessian estimator is

G TG T
Gii1=G; — tStSy Gt YiY:

T Te
s; G¢st Y: St

OptML FT———r

24 /26



Local superlinear convergence

Theorem (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under
mild conditions, BFGS achieves

il =l
35 xe =%,

=0

@ iteration complexity: larger than Newton methods but smaller than
gradient methods

@ asymptotic result: holds when t — oo
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Questions

e
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