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(Proximal) Gradient Methods

Iteration complexities of (proximal) gradient methods

strongly convex and smooth problems

O

(
κ log

1

ϵ

)
convex and smooth problems

O

(
1

ϵ

)

Can we have better convergence rate?
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Polyak’s Heavy-ball Method

Heavy ball Method (HB):

xt+1 = xt − ηt∇f (xt) + θt(xt − xt−1)︸ ︷︷ ︸
momentum term

add inertia to the “ball” (i.e. include a momentum term) to mitigate
zigzagging
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Polyak’s Heavy ball Method
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Polyak’s Heavy ball Method

Theorem (Convergence of heavy ball methods)

Suppose f is a L-smooth and µ-strongly convex quadratic function. If we
choose ηt = 4/(

√
L+

√
µ)2, θt = max{|1−

√
ηtL|, |1−

√
ηtµ|}2 and

κ = L/µ, then∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤
(√

κ− 1√
κ+ 1

)t ∥∥∥∥[x1 − x∗

x0 − x∗

]∥∥∥∥
2

only have convergence guarantee for quadratic function

significant improvement over GD: O
(√

κ log 1
ϵ

)
v.s. O

(
κ log 1

ϵ

)
Can we obtain improvement for more general convex cases as well?
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Nesterov’s idea

Nesterov’s accelerated gradient (NAG) method:

yt = xt + θt(xt − xt−1)

xt+1 = yt − ηt∇f (yt)

alternates between gradient updates and proper extrapolation

not a descent method (i.e. we may not have f (xt+1) ≤ f (xt))

one of the most beautiful and mysterious results in optimizatio
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Comparison between HB and NAG

Heavy ball NAG

xt+1 = xt − ηt∇f (xt) + θt(xt − xt−1)

{
yt = xt + θt(xt − xt−1)
xt+1 = yt − ηt∇f (yt)
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History

Polyak invented HB momentum in 1964 (and discussed the physics
analogy)

Nesterov invented NAG in 1983

Even though Nesterov was Polyak’s student, he seems not to have
mentioned the physics analogy

Sutskever et al. (2013)1 popularized momentum methods in machine
learning and revived the momentum interpretation.

1On the importance of initialization and momentum in deep learning. ICML 2013.
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Momentum methods for nonconvex problems
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Convergence Rate of NAG

Theorem

Suppose f is µ-strongly convex and L-smooth. If we choose ηt = η = 1/L

and θt = θ =
√
κ−1√
κ+1

, then

f (xt)− f (x∗) ≤
(
1− 1√

κ

)t−1

[f (x1)− f (x∗) +
µ

2
∥x1 − x∗∥22]
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Convergence Rate of NAG

Theorem

Suppose f is convex and L-smooth. If we choose ηt = η = 1/L and

θt =
λt−1
λt+1

where λ0 = 1 and λt+1 =
1+
√

1+4λ2
t

2 . Then

f (xt)− f (x∗) ≤
(
1− 1√

κ

)t−1

[f (x1)− f (x∗) +
µ

2
∥x1 − x∗∥22]

A simpler choice the θt is θt =
t

t+3 .
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Extension to Composite Models

minxF (x) = f (x) + h(x)

f is convex and smooth

h is convex (may not be differentiable)

Let F ∗ = minx F (x) be the optimal value
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FISTA (Beck & Teboulle ’09)

Fast iterative shrinkage-thresholding algorithm:

yt = proxηth(xt + θt(xt − xt−1))

xt+1 = yt − ηt∇f (yt)

has same convergence property as the convex problems

fast if prox can be efficiently implemented
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Lower Bounds

Interestingly, no first-order methods can improve upon Nesterov’s results
in general.

More precisely, there exists convex and L-smooth function f s.t.

f (x)− f ∗ ≥
3L ∥x0 − x∗∥22
32(t + 1)2

as long as xk ∈ x0 + span{∇f (x0), . . . ,∇f (xk−1)}︸ ︷︷ ︸
definition of first-order methods

for all 1 ≤ k ≤ t.

Lecture 08 OptML November 22nd, 2023 14 / 26



Example

min
x∈R2n+1

f (x) =
L

4

(
1

2
xTAx− e⊤1 x

)

where A =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 ∈ R(2n+1)×(2n+1)

f is convex and smooth

the optima x∗ is given by x∗i = 1− i
2n+2(1 ≤ i ≤ n).
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Newton’s Method

Recall that optimizing smooth function f (x) by gradient descent

xt+1 = xt −
1

L
∇f (xt)

is achieved by minimizing

min
x

f (xt) + ⟨∇f (xt), x− xt⟩+
L

2
∥x− xt∥22 .

If we can compute Hessian matrix, we can minimize

min
x

f (xt) + ⟨∇f (xt), x− xt⟩+
1

2
⟨x− xt ,∇2f (xt)(x− xt)⟩.

Suppose ∇2f (xt) is non-singular, then we achieve Newton’s method

xt+1 = xt − (∇2f (xt))
−1∇f (xt).
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Quadratic Convergence

Theorem

Suppose the twice differentiable function f : Rd → R has L2-Lipschitz
continuous Hessian and local minimizer x∗ with ∇2f (x∗) ⪰ µI, then the
Newton’s method

xt+1 = xt − (∇2f (xt))
−1∇f (xt)

with ∥x0 − x∗∥2 ≤ µ/(2L2) holds that

∥xt+1 − x∗∥2 ≤
L2
µ

∥xt − x∗∥22 .

Newton’s method has local quadratic convergence, which requires

T = O(log log(1/ϵ))

iterations to achieve ∥xT − x∗∥2 ≤ ϵ.
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Standard Newton’s Method

Strengths:

1 The quadratic convergence is very fast (even for ill-conditioned case).

Weakness:

1 The convergence guarantee is local.

2 Each iteration requires O(d3) time.
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Secant Condition

For quadratic function

Q(x) =
1

2
x⊤Ax− b⊤x,

we have ∇Q(xt+1)−∇Q(xt) = ∇2Q(xt+1)(xt+1 − xt).

For general f (x) with Lipschitz continuous Hessian, we have

∇f (xt+1)−∇f (xt) = ∇2f (xt+1)(xt+1 − xt) + o(∥xt+1 − xt∥2),

which leads to

∇f (xt+1)−∇f (xt) ≈ ∇2f (xt+1)(xt+1 − xt).
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Classical Quasi-Newton Methods

Motivated by

∇f (xt+1)−∇f (xt) ≈ ∇2f (xt+1)(xt+1 − xt),

classical Quasi-Newton methods target to find Gt+1 such that

∇f (xt+1)−∇f (xt) = Gt+1(xt+1 − xt)

and update the variable as

xt+1 = xt − G−1
t ∇f (xt).

We typically take G0 = δ0I with some δ0 > 0.

For given Gt or G
−1
t , we hope

1 {xt} converges to x∗ efficiently;

2 Gt+1 is close to Gt ;

3 Gt+1 or G−1
t+1 can be constructed/stored efficiently.
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Woodbury Matrix Identity

The Woodbury matrix identity is

(A+UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1,

where A ∈ Rd×d , C ∈ Rk×k , U ∈ Rd×k and V ∈ Rk×d .

For A = Gt , U = Zt , V = Z⊤
t and C = I, we let

Gt+1 = Gt + ZtZ
⊤
t ,

then

G−1
t+1 = G−1

t − G−1
t Zt(I+ Z⊤

t G
−1
t Zt)

−1Z⊤
t G

−1
t

can be computed within O(kd2) flops for given G−1
t .
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Classical SR1 Method

We consider secant condition and the symmetric rank one (SR1) update{
yt = Gt+1st ,

Gt+1 = Gt + ztz⊤t .

where st = xt+1 − xt and yt = ∇f (xt+1)−∇f (xt).

It implies

Gt+1 = Gt +
(yt − Gtst)(yt − Gtst)⊤

(yt − Gtst)⊤st
.

and the corresponding update to inverse of Hessian estimator is

G−1
t+1 = G−1

t +
(st − G−1

t yt)(st − G−1
t yt)⊤

(st − G−1
t yt)⊤yt

.
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Classical DFP Method

Let Gt+1 be the solution of following matrix optimization problem

min
G∈Rd×d

∥G− Gt∥Ḡ−1
t

s.t G = G⊤, Gst = yt ,

where the weighted norm ∥ · ∥Ḡt
is defined as

∥A∥Ḡt
=

∥∥Ḡ−1/2
t AḠ

−1/2
t

∥∥
F

with Ḡt =

∫ 1

0

∇2f (xt + τ(xt+1 − xt))dτ.

It implies DFP update

Gt+1 =

(
I− yts⊤t

y⊤t st

)
Gt

(
I− sty⊤t

y⊤t st

)
+

yty⊤t
y⊤t st

.

The corresponding update to inverse of Hessian estimator is

G−1
t+1 = G−1

t − G−1
t yty⊤t G

−1
t

y⊤t G
−1
t yt

+
sts⊤t
y⊤t st

.
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Classical BFGS Method

Let G−1
t+1 be the solution of the following matrix optimization problem

min
H∈Rd×d

∥H−Ht∥Ḡt

s.t H = H⊤, Hyt = st ,

where Ht = G−1
t and the weighted norm ∥ · ∥Ḡt

is defined as

∥A∥Ḡt
=

∥∥Ḡ1/2
t AḠ

1/2
t

∥∥
F

with Ḡt =

∫ 1

0

∇2f (xt + τ(xt+1 − xt))dτ.

It implies BFGS update

G−1
t+1 =

(
I− sty⊤t

y⊤t st

)
G−1

t

(
I− yts⊤t

y⊤t st

)
+

sts⊤t
y⊤t st

.

The corresponding update to Hessian estimator is

Gt+1 = Gt −
Gtsts⊤t Gt

s⊤t Gtst
+

yty⊤t
y⊤t st

.
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Local superlinear convergence

Theorem (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under
mild conditions, BFGS achieves

lim
t→∞

∥xt+1 − x∗∥2
∥xt − x∗∥2

= 0

iteration complexity: larger than Newton methods but smaller than
gradient methods

asymptotic result: holds when t → ∞
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Questions
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