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Review of Gradient Descent

For unconstrained convex optimization, the gradient descent method
starts with an initial point xg, and iteratively computes

Xt41 = Xt — ntVf(xt).

For constrained convex optimization with constraint C, the projected
gradient descent method starts with an initial point xg, and iteratively
computes

Xt4+1 = PC(Xt - ntVf(xt)).
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Review of Convergence Rate

. . convergence iteration
condition constrained .
rate complexity
strongly convex t
& smooth no 0 <(1 B %) ) O(rlog %)
strongly convex t
& smooth yes 0 <(1 B %) ) O log %)
convex & 1 1
<mooth no O (3) 0(z)
convex & 1 1
<mooth yes 0 (%) 0(2)

Table: Convergence Properties of GD & PGD
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Nondifferentiable Problems

Consider the objection function f(x) = |x|. If we perform GD with initial

point xg = " and constant stepsize 7, it will generate the sequence
n.-nn n
27 272 27
0.2
0»1 -0.5 0 0.5 1
s 3o

The descent directions may undergo large / discontinuous changes
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Subgradient (IXHHE)

We say g is a subgradient of f at the point x if

f(y) > f(x)+<g,y—x)1 Vy € dom f

~~

a linear under-estimate of f

The set of all subgradients of f at x is called the subdifferential of f at
denoted by Of(x).

OptML N F

xl

5/24



Example: f(x) = |x|

f(x) = Ix| df (x)

-1 0.5 30: 0.5 1 -1 05 ',;:‘ 05 1
{-1}, ifx<0

f(x) = Ix| of(x) =< [-1,1], ifx=0

{1}, ifx>0
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Example: max{fi(x), (x)}

max{f(x), L(x)} of (x)

T 6
4
2
0
-2
-4
g 05 0 05 1 15

f(x) = max{fi(x), f2(x)} where fi(x) and f>(x) are differentiable.

{0}, i) > H(x)
Of(x) = ¢ [f(x), ()], if H(x) =
{LC)), A <
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Subgradient of Differentiable Functions

If a function is differentiable, the only subgradient at each point is the
gradient.
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Optimality Condition for Nondifferentiable Functions

x is a minimum of f if and only if the zero vector is a subgradient of f at x.

Under strict convexity the minimum is unique.
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Basic Rules of Subgradient

e scaling: d(af) = adf, for a > 0
e summation: J(fi + f) = 0f + O

Example: Compute the subdifferential of /1 norm

d
f(x) = lIxlls =) Ixil
i=1
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Basic Rules of Subgradient (cont.)

@ chain rule: suppose f is convex, and g is differentiable,
nondecreasing, and convex. Let h(x) = g(f(x)), then

Oh(x) = g'(f(x))of (x)
@ Suppose f is convex, and let h(x) = f(Ax + b). Then
dh(x) = ATOf(Ax + b)

Example: Find a subgradient of ||Ax + b|;.
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Basic Rules of Subgradient (cont.)

e pointwise maximum: if f(x) = maxj<j<k fj(x), then
o1 (x) = conv { {0 ()Ifi(x) = F(x)}}
e pointwise supremum: if f(x) = sup,cr fa(x), then
9 (x) = closure (conv {U{afa(x)yfa(x) - f(x)}})
Example:
f(x) = lrg’agk{a,-Tx + bi}

Fx) = lIxlloo = max [xi
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Subgradient Characterization of Convexity

A function f is convex if and only if dom f is convex and 9f(x) # () for all
x € dom f.
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Subgradient Descent Method (IXFR/E (%)

In each iteration, the (projected) subgradient descent method computes

xer1 = Pe(xe — 17:8t),
where g; is any subgradient of f at x;.

Note: this update rule does not necessarily yield reduction w.r.t. the
objective values.
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Negative subgradients are not necessarily descent directions

Example: f(x) = |x1| + 3| x|

0.4
0.2
: -(1,0)
0 3 > &>y
7
4
4
-0.2 : 1
-(1,3)
0.4 : :
-1 -0.5 0 0.5 1

at x = (1,0):
e g1 = (1,0) € 9f(x), —g1 is a descent direction;
e g = (1,3) € 9f(x), —g2 is not a descent direction.
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Negative subgradients are not necessarily descent directions

Since f(x¢) is not necessarily monotone, we will keep track of the best
point

fi £ min f(x;
best,t 1<i<t ( I)

We denote f* = miny f(x) the optimal objective value.
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Convex and Lipschitz Problems

Clearly, we cannot analyze all nonsmooth functions. Thus we start with
Lipschitz continuous functions.

Remember that a function f : R — R is G-Lipschitz continuous if for all
x,y € RY we have

[F(x) = () < Gllx—yl,.

f is G-Lipschitz continuous implies that all its subgradients g is bounded,
e, [gl, < G.
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Polyak’'s Stepsize

We'd like to optimize ||x;+1 — x*||3, but don’t have access to x*

Key idea (majorization-minimization): find another function that
majorizes ||X¢+1 — x*Hg and optimize the majorizing function

Projected subgradient update rule obeys

[e1 — Xx*[13 < |Ixe — x*[13 —2ne(F(xe) — ) + n? |1ge 3

fixed

majorizing function
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Polyak’'s Stepsize

The majorizing function in (4.3) suggests a stepsize (Polyak '87)

f(x;) — f*
77t - ( t) 2
HgtHz

which leads to error reduction

(F(xe) — £*)°

2 2
[Xe+1 — x5 < [Jxe — x*[|5 — 5
gell5

@ require to know f*

@ the estimation error is monotonically decreasing with Polyak's stepsize
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Convergence Rate with Polyak's Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected
subgradient descent with Polyak’s stepsize obeys

G [Jxo — x|l

Vit+1

fbest,t —f* <
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Other Stepsize

Suppose f is convex and G-Lipschitz continuous over C. The projected
subgradient descent obeys

112
R S R D Y
est, >~ .
2Zf<:o Mk
If we choose n; = ﬁ we get
]2
e o xI3+ GRlog(t)
est,t = 4\/m
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Strongly Convex and Lipschitz Problems

Let f be p-strongly convex and G-Lipschitz continuous over C. If
Ne = ﬁ then the projected subgradient descent obeys

2G?
f < —.
best,t — /,L(t+1)
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Summary

.y . convergence iteration
condition stepsize .
rate complexity
I I I
convex & smooth | n; = @) (;) ) (E)
strongly convex 1 ( 1 t) 1
& smooth m=1 | 0((1-%) O(rlog 2)

Table: Convergence Properties of GD & PGD

. convergence | iteration
stepsize .
rate complexity
convex & smooth | n; ~ % 0 <%) o)
strongly convex 1 1 1
& smooth e~ O (%) 0(2)

Table: Convergence Properties of Subgradient Descent
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Questions

e
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