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Review of Smooth and Strongly Convex

A differentiable function f is L-smooth if
L
Fy) < f(x) + (VF(x),y =) + S x — yl3, V x,y € R?
A differentiable function f is u-strongly convex if

F(y) 2 F(x) + (VF(x)y —x) + 5 x = yIB, Vxy € B

K2 ﬁ is the condition number.

OptML T e Ry



Review of Gradient Descent

Consider an unconstrained convex optimization problem

in f(x).
2 )

The gradient descent method starts with an initial point xg, and
iteratively computes

Xer1 = Xe — NeVE(X¢).

OptML I e R



Review of Gradient Descent

stepsize convergence iteration
P rate complexity
strongly convex | 7 = % or < 1 t) 1
& smooth Nt = ﬁ 0 (1 ”‘) O(xlog 2)
locally strongly 1 ( 1 t) 1
convex & smooth | ¢ T L o((t-%) O(rlog )
PL condition & 1 1\t 1
smooth =1 0 <(1 B E) ) O(rlog )
convex & 1 1 1
<mooth =1 O (%) 0 (z)
nonconvex & 1 1 1
smooth =1 0 (W) 0(z)

Table: Convergence Property of GD
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© Projected Gradient Descent
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Constrained Convex Optimization

Suppose f is a convex function and C € R is a closed and convex set.
The constrained convex optimization problem is:

min f(x)

X

st.xeC
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Optimality Condition

Suppose f is convex and differentiable. Then

x" € argminf(x) <= (-Vf(x*),z—x") <0,VzelC
xeC
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Projected Gradient Descent (&5 46 T FEI%)

Idea: project onto C after every gradient descent step:
Xt+]_ = PC(Xt — 'I’]t-Vf(Xt))
where Pe(x) £ arg min,cc ||z — x||3 is Euclidean projection onto C.
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Properties of Projection

xc = Pe(x)
T «--a C
\\\
Y
z

Let C € RY be closed and convex, z € C, x € RY. Then
Q (x—Pc(x),z—Pe(x)) <O.
@ x —Pc(x)I3+ l|lz — Pe(x)I3 < lIx — zI3
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Properties of Projection: Nonexpansivness

Let C € R? be closed and convex. For any x,z € RY, we have

[Pe(x) = Pe()l2 < lx =zl
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Think

Suppose f is a convex function and C is a closed convex set. Let

X =argmin f(x) and x* =argmin f(x)
xR xeC

Is it true that
X" = Pe(X)?
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Examples

Pa(x)

Projecting onto an affine subspace:

y = argmin||Az — x|[, = (ATA)*ATx
z

Pa(x) = Ay = A(ATA) AT
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Examples

Projecting onto a unit Euclidean ball (¢2 ball):
X

Pe(x) = argmin||x — z|, = ———
llz]l,<1 2 max{1, [|x||,}
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Examples

« Pe(x)

Projecting onto a unit ¢; ball:

y = Pc(x) = argmin [|x — z||,
llz]l1<1

If ||x]|1 <1 then P¢(x) = x. Otherwise,
yi = sign(x;)(|xi| = A)+

where ()4 = max{-,0} and A is the root of >_7_;(|x;]| — A)+ = 1.
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Smooth and Strongly Convex Constrained Problems

mxin f(x)

st.xeC

o f: L-smooth and u-strongly convex

e C € RY: closed and convex
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Smooth and Strongly Convex Constrained Problems

Let f be L-smooth and p-strongly convex. If n; =n = ﬁ then PGD

obeys
k—1\"¢
e = %[, < ( ) Ixo = x°Il.

k+1

the same convergence rate as for the unconstrained case
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Contraction Mapping (&4&HEST)

Contraction mapping in Euclidean space: If a function f : X — X
satisfies

1FO) = FW)lla <vlIx = yll2, Vxoy € X

for some v € (0,1), then we call f is a contraction mapping.

The contraction mapping f has a unique fixed point %, i.e., f(X) = X.
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Smooth and Convex Constrained Problems

mxin f(x)

st.xeC

@ f: convex and L-smooth

e C € RY: closed and convex
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Smooth and Convex Constrained Problems

Let f be convex and L-smooth. If n, =7 = % then PGD obeys

2L[|xg — x*|2
F(xe) — F(x") < ont <l

the same convergence rate as for the unconstrained case
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Convergence Analysis

Recall the main steps when handling the unconstrained case:
@ Step 1: show improvement

1
f(xet1) < F(xe) — 5[ [V £(x;)||5 not true for constrained case

@ Step 2: by convexity,
* * 1
f(xer1) <F(XT) + (VF(xe), X" — x¢) — o IVF(x:)l3
* L *
=f(x )+{let—x I3 -

o Step 3: telescoping

1
Xt — X" — ZVf(xt)

N

2
2
T—

Flxr) = Fx) = = 3 (Flxern) — F(x)) < oecllxo —x° P

t=0

[y
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Convergence Analysis

For the constrained case, we aims to replace Vf(x) in the unconstrained
case by

ge(x) = L{x ~ Pe(x — 1 VF(x)))

We have ge(x¢) = L(x¢ — X¢41)-
@ Step 1: descent guarantee

1
Flxer1) < F(xe) = 57 llge(xo)l3

o Step 2:

Flxern) <FOC) + (gelxe). X" —xe) — o7 gl

o Step 3: telescoping

iy

1= L o
F(x7) = F(x") = = > (Flxes1) = F(x) < 5= llx0 — x|

t=0
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Frank-Wolfe Algorithm

Consider following problem:
min f(x)

X

st. Ax<b

Computing projection is very expensive!
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Frank-Wolfe Algorithm

Algorithm 1 Frank-Wolfe (a.k.a. conditional gradient) Algorithm
fort=1,2,... do
Y = arg ming o (VF(x¢), x) //direction finding
Xer1 = (1 — ne)xe + 0yt //line search and update
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Frank-Wolfe Algorithm

Algorithm 2 Frank-Wolfe (a.k.a. conditional gradient) Algorithm
fort=1,2,... do
ye = argmin o (VF(x¢), x) //direction finding
Xer1 = (1 — ne)Xe + 1eye //line search and update

@ main step: linearization of the objective function
@ appealing when linear optimization is much cheaper than projection

@ stepsize: 0 = ti—2
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Frank-Wolfe Algorithm

Let f be convex and L-smooth. If i = one has

2
t+27
2L D?
t+2

f(xe) — F(x") <
where D = sup, yec [|x — yll»

For compact constraint sets, Frank-Wolfe attains e-accuracy with O(%)
iterations.
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Summary

e Frank-Wolfe: projection-free

stepsize | convergence iteration
rule rate complexity
convex & smooth 1
= 2 o (% o (%
problems Mt =3 (t) (s)
e projected gradient descent
stepsize | convergence iteration
rule rate complexity
convex & smooth 1 1 1
problems =L 0(3) (2)
strongly convex & 1 ( 1\t 1
=1 1-1 ) O (klog L
smooth problems m=z | O ( K> (K s 5)
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Questions

e
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