
Optimization for Machine Learning
机器学习中的优化方法

陈陈陈 程程程

华华华东东东师师师范范范大大大学学学 软软软件件件工工工程程程学学学院院院

chchen@sei.ecnu.edu.cn

Lecture 04 OptML October 18th, 2023 1 / 28



Review of Smooth and Strongly Convex

We say a differentiable function f is L-smooth if for all x, y we have

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2 .

We say a function f is µ-strongly convex if the function

g(x) = f (x)− µ

2
∥x∥22

is convex for some µ > 0.

Let f be L-smooth and µ-strongly convex. Its condition number is defined
as κ ≜ L

µ and we have

µI ⪯ ∇2f (x) ⪯ LI.
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Review of Gradient Descent

Gradient Descent: Start with the initial point x0 and computes

xt+1 = xt − ηt∇f (xt)

Let f be L-smooth and µ-strongly convex. If we choose ηt = η = 2
µ+L ,

then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

To achieve ϵ-accuracy, i.e., ∥xt − x∗∥2 ≤ ϵ, the necessary number of
iterations is

log(∥x0 − x∗∥2 /ϵ)
log(κ+1

κ−1)
= O

(
κ log

1

ϵ

)
︸ ︷︷ ︸

iteration complexity

.
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Convergence of f (xt)− f (x∗)

Let f be L-smooth and µ-strongly convex. If ηt = η = 2
µ+L , then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .

By smoothness and strong convexity, we know

f (xt)− f (x∗) ≤ κ

(
κ− 1

κ+ 1

)2t

(f (x0)− f (x∗)).
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Convergence of f (xt)− f (x∗)

Let f be L-smooth and µ-strongly convex. If ηt = η = 1
L , then the outputs

of GD satisfies

f (xt)− f (x∗) ≤
(
1− 1

κ

)t

(f (x0)− f (x∗)),

which means the iteration complexity is also O
(
κ log 1

ϵ

)
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Line Search (线搜索)

In practice, one often performs line searches rather than adopting constant
stepsizes because:

L may be unknown;

L may be too high.

Exact line search:

ηt = argmin
η≥0

f (xt − η∇f (xt)).

Exact line search is usually not practical since the subproblem is hard to
solve.
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Backtracking Line Search (回溯线搜索)

Armijo condition: for 0 < α < 1,

f (xt − η∇f (xt)) < f (xt)− αη∥∇f (xt)∥22

f (xt)− αη∥∇f (xt)∥22 lies above f (xt − η∇f (xt)) for small η

ensures sufficient decrease of objective values
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Backtracking Line Search (回溯线搜索)

1: Initialize η = 1, 0 < α ≤ 1/2, 0 < β < 1.
2: while f (xt − η∇f (xt)) > f (xt)− αη∥∇f (xt)∥22 do
3: η ← βη
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Convergence of Backtracking Line Search

Theorem (Boyd, Vandenberghe ’04)

Let f be L-smooth and µ-strongly convex. With backtracking line search,

f (xt)− f (x∗) ≤
(
1−min

{
2µα,

2αβµ

L

})t

(f (x0)− f (x∗))
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Summary

So far we have established linear convergence under strong convexity and
smoothness.

Is strong convexity necessary for linear convergence?
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Example: Logistic Regression

Suppose we obtain n independent binary samples

bi =

{
1 with prob. 1

1+exp(−a⊤i x)

−1 with prob. 1
1+exp(a⊤i x)

where the ai and bi are the feature vector and the label of the i-th data
sample respectively, x is the model parameters.
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Example: Logistic Regression

The maximum likelihood estimate (MLE) is given by (after a little
manipulation)

min
x∈Rd

f (x) =
1

n

n∑
i=1

log(1 + exp(−bia⊤i x))

∇2f (x) = 1
n

∑n
i=1

exp(−bia
⊤
i x)

(1+exp(−bia⊤i x))2
aia

⊤
i

x→∞−→ 0

⇒ f is 0-strongly convex

Does it mean we no longer have linear convergence?
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Local Strong Convexity

Let f be locally L-smooth and µ-strongly convex such that

µI ⪯ ∇2f (x) ⪯ LI, ∀x ∈ B0

where B0 = {x| ∥x− x∗∥2 ≤ ∥x0 − x∗∥2}. Then GD obeys

∥xt − x∗∥2 ≤
(
κ− 1

κ+ 1

)t

∥x0 − x∗∥2 .
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Local Strong Convexity

Suppose xt ∈ B0. Then follow previous analysis yields
∥xt+1 − x∗∥2 ≤

κ−1
κ+1 ∥xt − x∗∥2

This means xt+1 ∈ B0, so the above bound continues to hold for the
next iteration ...
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Local Strong Convexity

The local strong convexity parameter of the logistic regression example is
given by

inf
{x|∥x−x∗∥2≤∥x0−x∗∥2}

λmin

(
1

n

n∑
i=1

exp(−bia⊤i x)
(1 + exp(−bia⊤i x))2

aia
⊤
i

)

which is often stricly bounded away from 0.
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Polyak-Lojasiewicz Condition

Recall that an equivalent condition of µ-strongly convex is

f (x) ≤ f (y) + ⟨∇f (y), x− y⟩+ 1

2µ
∥∇f (x)−∇f (y)∥22.

If we choose y = x∗, we get the Polyak-Lojasiewicz (PL) condition

f (x)− f (x∗) ≤ 1

2µ
∥∇f (x)∥22.

where x∗ can be any minimum of f .

The PL condition guarantees that gradient grows fast as we move away
from the optimal objective value.
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Polyak-Lojasiewicz (PL) Condition

PL condition:

f (x)− f (x∗) ≤ 1

2µ
∥∇f (x)∥22

does NOT imply the function is convex

does NOT imply the uniqueness of global minima

guarantees that every stationary point is a global minimum
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Convergence under PL condition

Suppose f is L-smooth and satisfies PL condition with parameter µ. If
ηt = η = 1

L , then GD obeys

f (xt)− f (x∗) ≤
(
1− 1

κ

)t

(f (x0)− f (x∗)),

which means the iteration complexity is also O
(
κ log 1

ϵ

)
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Example: Over-parameterized Linear Regression

Linear regression:

min
x∈Rd

f (x) =
1

2

n∑
i=1

(a⊤i x− bi )
2.

Over-parameterization: model dimension > sample size, i.e., (d > n).

∇2f (x) =
∑n

i=1 aia
⊤
i is rank-deficient if d > n, thus f (x) is not

strongly convex

PL condition is met
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Example: Over-parameterized Linear Regression

Suppose A = [a1, . . . , an]⊤ ∈ Rn×d has rank n, and that
ηt = η = 1

λmax(AA⊤)
. Then GD obeys

f (xt)− f (x∗) ≤
(
1− λmin(AA

⊤)

λmax(AA⊤)

)t

(f (x0)− f (x∗)).

very mild assumption on A

while there are many global minima for this over-parametrized
problem, GD converges to a global min closest to initialization x0.
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Dropping strong convexity

What happens if we completely drop (local) strong convexity?

We only suppose f (x) is smooth and convex.
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Convergence rate for convex and smooth problems

Let f be convex and L-smooth. If ηt = η = 1
L , then GD obeys

f (xt)− f (x∗) ≤ 2L∥x0 − x∗∥2

t

Without strong convexity, convergence is typically much slower than
linear convergence

attains ϵ-accuracy within O(1ϵ ) iterations (vs O(log(1ϵ )) iterations for
linear convergence)
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Nonconvex problems

Many objective functions in machine learning are nonconvex:

low-rank matrix completion

mixture models

learning deep neural nets

...
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Challenges

there may be local minima everywhere

no algorithm can solve nonconvex problems efficiently in all cases
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Typical Convergence Guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

convergence to stationary points ,i.e., ∇f (x) = 0

convergence to local minima

local convergence to global minima i.e., when initialized suitably
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Making Gradients Small

Suppose we aim to find a stationary point, which means that our goal is
merely to find a point x with

∥∇f (x)∥2 ≤ ϵ (called ϵ-approximate stationary point)

ϵ-approximate stationary point does not imply local minima for nonconvex
optimization.

Lecture 04 OptML October 18th, 2023 26 / 28



Making Gradients Small

Let f be L-smooth and ηt = η = 1
L , then GD obeys

min
0≤k≤t

∥∇f (xt)∥2 ≤
√

2L(f (x0)− f (x∗))

t
.

GD finds an ϵ-approximate stationary point in O(1/ϵ2) iterations.

does not imply GD converges to stationary points; it only says that
there exists an approximate stationary point in the GD trajectory
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Questions
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