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Review of Smooth and Strongly Convex

We say a differentiable function f is L-smooth if for all x,y we have

IVE(x) = VE)l2 < Lllx =yl

We say a function f is p-strongly convex if the function
K 2
g(x) = 7(x) — & |3
is convex for some p > 0.

Let f be L-smooth and p-strongly convex. lts condition number is defined
as k& ;% and we have

pl < V2f(x) < LI
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Review of Gradient Descent

Gradient Descent: Start with the initial point xg and computes

Xey1 = X¢ — NeVE(X¢t)

Let f be L-smooth and p-strongly convex. If we choose n: =n = uiL'
then GD obeys
k—1\°
o=l < (257) o= =l

To achieve e-accuracy, i.e., ||x; — x*[|, < €, the necessary number of

iterations is .
allzo X129 _ o (jog)
log(£4}) €

iteration complexity
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Convergence of f(x;) — f(x¥)

Let f be L-smooth and p-strongly convex. If ny =n = ﬁ then GD obeys

—1\¢
Ixe —x*[l, < = Ixo — X", -
2 Ku—f-]. 2

By smoothness and strong convexity, we know

k—1
k+1

ﬂm)fuwsH( )huawﬂf»
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Convergence of f(x;) — f(x¥)

Let f be L-smooth and pu-strongly convex. If n; =n = % then the outputs
of GD satisfies

fl) — £(7) < (1= 1) (o) = Fx))

which means the iteration complexity is also O (r log 1)

OptML Ty



Line Search (& R)

In practice, one often performs line searches rather than adopting constant
stepsizes because:

@ L may be unknown;

@ L may be too high.

Exact line search:

ne = argmin f(x; — nVF(x¢)).
1n=>0

Exact line search is usually not practical since the subproblem is hard to
solve.

OptML Qe R G



Backtracking Line Search ([EIJiZ %)

f(xe —nVf(x0)

fxo) §-

O\—\‘—I—) — So - R r’
accepiable Fx) — anllVF(xII?
Fx) = nlIVFxOI?

Armijo condition: for 0 < a < 1,

F(xe =1V F(xe)) < f(xe) — anl VF(xe) 2

o f(x¢) — an||VF(x:)||3 lies above f(x; — nVf(x;)) for small n
@ ensures sufficient decrease of objective values
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Backtracking Line Search ([EIJiZ %)

f(xe = nVf(x0)

fxo S

o
acceptable  f(x) — anl|vf(x)l2
f@x) = nlIvF oI

1: Initializen =1, 0< « <1/2,0< B < 1.
2: while f(x; —nVf(x¢)) > f(x:) — omHVf(xt)H% do
33 n<Pn
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Convergence of Backtracking Line Search

Theorem (Boyd, Vandenberghe '04)

Let f be L-smooth and u-strongly convex. With backtracking line search,

() = £6) < (1 min {2ue, 2‘”f“})t(f(xo) ~ f(x))
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Summary

So far we have established linear convergence under strong convexity and
smoothness.

Is strong convexity necessary for linear convergence?
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Example: Logistic Regression

Suppose we obtain n independent binary samples

. 1
b 1 with prOb. W_al—rx)
! -1 with prob. m

where the a; and b; are the feature vector and the label of the /-th data
sample respectively, x is the model parameters.
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Example: Logistic Regression

The maximum likelihood estimate (MLE) is given by (after a little
manipulation)

1 n
in f(x) ==Y log(1+ exp(—b;a;
min f(x) = iE—l og(1 + exp( x))

2 _ 1 exp(—b;a;! x) T X—0
[*] V f(X) ~ n Ei:l (1+eXP(—b,'alTx))2a’af — O
= f is O-strongly convex

@ Does it mean we no longer have linear convergence?
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Local Strong Convexity

Let f be locally L-smooth and p-strongly convex such that
pl = V2f(x) < LI, Vx € By

where By = {x|||x — x*[|, < [[xo — x*||,}. Then GD obeys

—1\!
Ixe —x*[l, < = Ixo — X", -
2 /‘i—i-]. 2

OptML Ty



Local Strong Convexity

xlllx = x*[l2 < [Ixo —x"[|2}

@ Suppose x; € By. Then follow previous analysis yields
-1
[xe41 = x*[lo < 557 [Ixe = x|
@ This means x;11 € By, so the above bound continues to hold for the
next iteration ...
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Local Strong Convexity

The local strong convexity parameter of the logistic regression example is
given by

1< —bia
inf Amin | — Z exp(—bia; ﬁ) 2aia,-T
{xlllx=x* [l ,<[Ixo—x* |} n < (1+ exp(—bja, x))

i=1

which is often stricly bounded away from 0.
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Polyak-Lojasiewicz Condition

Recall that an equivalent condition of p-strongly convex is
1
f(x) < f(y) + (VF(y),x—y) + @HW(X) — VI(y)l3-
If we choose y = x*, we get the Polyak-Lojasiewicz (PL) condition
. 1
f(x) — f(x¥) < ZIIW(X)H%'
where x* can be any minimum of f.

The PL condition guarantees that gradient grows fast as we move away
from the optimal objective value.
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Polyak-Lojasiewicz (PL) Condition

PL condition: 1
f(x) — f(x*) < ZIIW(X)HE

@ does NOT imply the function is convex
@ does NOT imply the uniqueness of global minima

@ guarantees that every stationary point is a global minimum

16 _y:x2+3(sin x)2
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Convergence under PL condition

Suppose f is L-smooth and satisfies PL condition with parameter p. If
ne=mn= % then GD obeys

)~ £(67) < (1= 1) (7o) - ),

which means the iteration complexity is also O (f@log %)
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Example: Over-parameterized Linear Regression

Linear regression:
n

min f(x) = %Z(a?x — b))%

d
xeR i1

Over-parameterization: model dimension > sample size, i.e., (d > n).

o V2f(x)=>_"_,a;a;] is rank-deficient if d > n, thus f(x) is not
strongly convex

@ PL condition is met
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Example: Over-parameterized Linear Regression

Suppose A = [ay,...,a,]" € R™ has rank n, and that

Ne="1n= m. Then GD Obeys

. TV ¢
)~ 1) < (1 3700 ) (7tsa) = 7).

@ very mild assumption on A

@ while there are many global minima for this over-parametrized
problem, GD converges to a global min closest to initialization xg.
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Dropping strong convexity

What happens if we completely drop (local) strong convexity?

We only suppose f(x) is smooth and convex.
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Convergence rate for convex and smooth problems

Let f be convex and L-smooth. If n; =n = % then GD obeys

2L[|xg — x*||2
Fxe) — F(x") < Hth il

o Without strong convexity, convergence is typically much slower than
linear convergence

e attains e-accuracy within O(2) iterations (vs O(log(1)) iterations for
linear convergence)
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Nonconvex problems

Many objective functions in machine learning are nonconvex:
@ low-rank matrix completion
mixture models

°
@ learning deep neural nets
°
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Challenges

@ there may be local minima everywhere

@ no algorithm can solve nonconvex problems efficiently in all cases
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Typical Convergence Guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

@ convergence to stationary points ,i.e., Vf(x) =0
@ convergence to local minima

@ local convergence to global minima i.e., when initialized suitably
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Making Gradients Small

Suppose we aim to find a stationary point, which means that our goal is
merely to find a point x with

|VF(x)||, < € (called e-approximate stationary point)

e-approximate stationary point does not imply local minima for nonconvex
optimization.
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Making Gradients Small

Let f be L-smooth and n; =n = % then GD obeys

min [VF(xg), < /2Ll =10C),

0<k<t t

e GD finds an e-approximate stationary point in O(1/€?) iterations.

@ does not imply GD converges to stationary points; it only says that
there exists an approximate stationary point in the GD trajectory
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Questions

e
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