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Differentiable Unconstrained Optimization

Suppose the objective function (or loss function) f is differentiable. The
unconstrained optimization problem is:

min f(x)

X

st. x e RY
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Optimal Condition (B {CPES)

Suppose f is differentiable and convex. A point x* is optimal if and only if

VF(x*) = 0.

Strict convex function has unique optimal solution.
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Iterative Descent Methods

Start with a point xg and construct a sequence {x;} s.t.,

f(Xt+1) < f(Xt). t= 07 1, e

We call d is a descent direction at x if

P d) 2 fim T 1) = F00)

t—0 t

= Vf(x)'d <0.

directional derivative
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Iterative Descent Methods

@ Start with a point xg;

@ In each iteration, search in descent direction
Xt41 = X¢ + 1edy

where d; is the descent direction at x; and 7; is the stepsize.
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How to Find a Descent Direction?

By Cauchy-Schwarz inequality,
min f'(x;d) = min Vf(x)'d = —||VFf(x)|2

[[dll2<1 [ld]l2<1

f'(x; d) achieve minimum when d = —Vf(x).
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Gradient Descent (FA/E FF#{%)

One of the most important descent methods: gradient descent
Xt+1 = Xt — e VF(xt)
@ descent direction: d; = —Vf(x;)

@ traced to Augustin Louis Cauchy '1847
e First-order Taylor approximation: f(x) =~ f(x¢) + (VF(x¢),x — X¢)
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Quadratic Minimization

We begin with the quadratic objective function:
: L T T
minf(x) = =x Qx — b ' x,
x 2
for some d x d symmetric matrix Q > 0.

@ The gradient is Vf(x) = Qx — b.
e The unique optimal solution is x* = Q™ !b.

o Ai(Q)I = Q = X\g(Q)I, where A1(Q) and A\y(Q) are largest and
smallest eigenvalues of Q respectively.
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How to Find a Good Stepsize?

According to the GD update rule,
Xep1 — X =% — X" — n:VI(xe) = (I = 7:Q) (x¢ — x)
= [[xe1 = x¥l2 < 1= 7:Qlf2[Ix¢ — x7[|2

We observe that

M= 1:Qll2 = max{[1 — n:A1(Q)], [1 — n:Aa(Q)[}
optimal choice is n; = >\1(Q)2

N
~ A1(Q) — A(Q)
Q) +2(Q)
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Convergence for Constant Stepsize

_ _ 2
If1: =1 = yrw@

] M(Q) — Ad(Q)\ "
R G L W

, then

The stepsize ny = n = W relies on the eigenvalues of Q, which

+Ad
requires preliminary experimentation.
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Generalization

Let's now generalize quadratic minimization to a broader class of problems

min f(x)

X

where
pl < V2F(x) < LI

OptML Qe i G il



Smoothness (JGIEE)

We say that a function f : RY — R is G-Lipschitz continuous if for all
x,y € RY we have

[F(x) = f(Y) < G llx—yll,-

We say a differentiable function f : RY — R is [-smooth if it has
L-Lipschitz continuous gradient. That is, for all x,y € RY, we have

IVE(x) = VEy)l2 < Lllx=yl-
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Smoothness

Which of following functions are smooth?
o f(x)=x%

o f(x) = %xTQx —b"x with Q = 0;

e f(x)=sinx.
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Equivalent First-Order Characterizations of Smoothness

Let f : RY < R be a convex and differentiable function. Then the
following properties are equivalent characterizations of L-smoothness of f:

Q [[VF(x) — VF(y)ll2 < LlIx —yll2, V x,y € R,
Q@ (VF(x)—Vf(y),x—y) < L|x—yl3 VxyeR
@ f(y) < F(x)+ (VF(x),y —x) +5x —yl3, V x,y € R,
first-order Taylor expansion
Q f(y) > f(x) + (VF(x),y — x) + 57 [IVF(x) = VF(y)|3, V x,y € RY;
Q (VF(x) = Vf(y),x—y) > 1| VF(x) = VF(y)[3, V x,y € RY;

Think: which characterizations do not hold if f is not convex?
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Equivalent Second-Order Characterization of Smoothness

We say a differentiable function f : RY — R is L-smooth if

IVF(x) = VI(y)ll, < Llx =yl

Second-Order Characterization:

Let f : RY « R be a twice differentiable function. Then the following
property is an equivalent characterization of L-smoothness of f:

—L1 < V2f(x) < LI
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Strongly Convexity (GEM14)

We say f is p-strongly convex if the function
H 2
g(x) = £(x) = & 1xI

is convex for some p > 0.
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Equivalent First-Order Characterizations of Strong
Convexity

Let f : RY «+ R be a convex and differentiable function. Then the
following properties are equivalent characterizations of p-strong convexity

of f:
Q [[VF(x) = VF(y)ll2 > pllx —yl[2. ¥ x,y € RY;
Q@ (VF(x) = Vf(y),x—y) > ulx—yl3 VxyeR%
Q f(y) > f(x) + (VF(x),y —x) + 5lx —y[3, V x,y € RY
Q f(y) < F(x) + (VF(x),y —x) + 5, I VF(x) = VF(y)[5, ¥ x,y € R;
Q (VF(x) = VF(y),x —y) < ;|IVF(x) = VF(y)l5, ¥ x,y € RY,

Strongly convex functions are strictly convex.
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Equivalent Second-Order Characterization of Strongly
Convexity

Second-Order Characterization:
Let f : R + R be a twice differentiable function. Then the following
property is an equivalent characterization of pu-strongly convex of f:

V2f(x) = pl.
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Strongly Convex and Smooth Functions

Let f be L-smooth and u-strongly convex. Then we have

pl < V2f(x) < LI

Let k £ ﬁ be the condition number.
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Convergence Rate of Strongly Convex and Smooth
Problems

Let f be L-smooth and p-strongly convex. If n; =n = ﬁ then

k—1\"
o=l < (257) o= =l

. . . . log(||xo—x*||,/€
Iteration complexity: To achieve e-accuracy, we require g(&goi,ﬁl”f/)
rk—1

number of iterations.

Dimension-free: The iteration complexity is independent of problem size d
if x does not depend on d.
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