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Lines and Line Segments (BE.45 %5 Ex)

line through x; and x»: all points
x=0x1+(1—0)x2, 6€R.
line segment between x; and x»: all points

x=0x1+(1—-60)x2, 0<6<1.

OptML e — Ry



Convex Sets (I'1%)

A set S C R” is convex if the line segment between any two points of S
lies in S, i.e., if for any x,y € S and 6 € [0, 1], we have

Ox + (1 — )y € S.

]
I

Every two points can see each other.
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Properties of Convex Sets

o If S is a convex set, then kS = {ks|k € R,s € S} is convex.

@ If Sand T are convex sets, then S+ 7T = {s+tlseS,teT}is
convex.

e If S and T are convex sets, then S x T = {(s,t)|s€ S,t € T} is
convex.
o If S and 7T are convex sets, then SN 7T is convex.
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Convex Combination (M4 &)

Convex combination of xi,...,x,: any point x of the form
X = 01x1 + Ooxo + - - - + O

with 01+-~-+9k:1, 9,20

If x1,...,Xxx belong to a convex set S, then their convex combination x
also belongs to S.
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Convex Hull (I'46)

Convex hull convS: set of all convex combinations of points in S.
convS = {91x1—|—~--—|—9kxk\x,- €85,0;>0,i=1,...,k,01+---+0, = 1}.

Example: convex hull of {0,1} is [0, 1].

& G
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Affine Sets (175148)

A set is called affine set if it contains the line through any two distinct
points in the set.

Example: solution set of linear equations {x|Ax = b}.
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Cones ()

A set C is called a cone if for every x € C and € > 0 we have 6x € C.
A set C is called a convex cone if it is convex and a cone, which means
that for any x1,x, € C and 61,65 > 0, we have

01x1 + 0% € C.

x1

T2
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Hyperplanes and Halfspaces (-1 5 - F )

Hyperplane: set of the form {x|]a’x = b} (a # 0).

Halfplane: set of the form {x|a’x < b} (a # 0).

/a
a’x>b

)

a’z <b

Hyperplane is affine set.
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Norm Balls (YE£{EK)

Norm ball with center x. and radius r: {x|||x — x| < r}.

p=0o0 p=2 p=1
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Norm Cones (TEELHE)

Norm cone: {(x,t)|||x| < t}.
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Operations that preserve convexity (PRIIZH )

Affine functions (/751 5K%%).
Suppose S is convex and f : R” — R™ is an affine function:
f(x) = Ax+b.
Then the image of S under f:
f(S8) = {f(x)lx € S}
is convex. The inverse image:
fHS) = {x e R"|f(x) € S}

is convex.
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Operations that preserve convexity (PRIIZH )

Intersection (HUZZ%E).

The intersection of (any number of) convex sets is convex, i.e., if S, is
convex for any o € A, then Nyec S, is convex.

A closed convex set S is the intersection of all halfspaces contain it:

S= ﬂ{’HH—[ is halfspace, S C H}
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Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists a = 0 and b s.t.

aTxgbforxec, a' x> bforxeD.

~

a'x>b afyr < b
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Hyperplane Separation Theorem
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Strict Separation Theorem

Suppose C and D are nonempty disjoint convex sets. If C is closed and D
is compact, there exists a # 0 and b s.t.

a'x<bforxeC, a'x>bforxeD.

Example: a point and a closed convex set.
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Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point xq:
{a'x=a"xo}

where a# 0 and a'x < a'xq for all x € C.

N
Iy

Supporting hyperplane theorem: if C is convex, then there exists a
supporting hyperplane at every boundary point of C.
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Convex Function (I'4ER%Y)
A function f : R” — R is convex if dom f is a convex set and

f(Ox+ (1 —0)y) < 0f(x) + (1 — 0)f(y)
for all x,y € dom f , 0 € [0, 1].
f is concave if —f is convex.

Strict convex function:

f(Ox+(1—0)y)<6f(x)+(1—60)(y), t€(0,1), x£y

(y, f(y))
(z, f(x))
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Examples

exponontial: e,

power: x*(x >0, > 1).
logarithm: log, x (0 < a < 1).
negtive entropy: x logx
affine: a'x + b.

norms: ||x||.
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First-Order Condition

Suppose f is differentiable and has convex domain, then f is convex if and
only if

f(y) = f(x) + (VF(x),y — x)

holds for all x,y € dom f.

fy)
F@) + V@) (y - =)
(z, f())
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First-Order Condition

If Vf(x) =0, then for all y € dom f, f(y) > f(x), i.e., x is a global
minimizer of f.

Strict convex:

f(y) > f(x) + (VFf(x),y —x), if y # x.
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Second-Order Condition

Suppose f is twice differentiable and has convex domain, then f is convex
if and only if

V2f(x) > 0.
Strict convex:
V2f(x) - 0.
OptML
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Examples

e least-square: f(x) = ||Ax — b||3
o quadratic-over-linear: f(x,y) = x?/y

o log-sum-exp: f(x) = log> i, exp(x;)
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Sublevels

The a-sublevel set of a function f is defined as

Cq = {x € dom f|f(x) < a}

Sublevel sets of convex functions are convex (converse is false).
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Epigraph (L 77H])

The epigraph of a function f : & — R is defined as the set

epif 2 {(x,u) € S xR: f(x) < u}.

epi f

Theorem. A function f(x) is convex if and only if its epigraph is a convex
set.
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Jensen Inequality

Jensen Inequality and extensions:
f(Ox+(1—0)y) <0f(x)+ (1 —0)f(y), 6 €[0,1]

f(91X1 =+ .- +9kxk) < 91f(X1) + -+ ka(xk), 01+ .. .9k =1

f ( A p(x)xdx> < /5 F(x)p(x)d x

f(E[x]) < E[f(x)], for any random variable x
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Operations that preserve convexity

Nonnegative weighted sums:
A nonnegative weighted sum of convex functions

f=wfh+ -+ wnfn

is convex.

Composition with affine function:
If f is convex, then f(Ax + b) is convex.
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Operations that preserve convexity

Pointwise maximum:
If fi,...,fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex.

Example:
@ piecewise-linear function: f(x) = max,-:17_,,m(a,-Tx + b;) is convex

@ sum of r largest components of x € R":
f(x) =X+ + X

is convex. ( xpj is i-th largest component of x)
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Operations that preserve convexity

Pointwise supremum:
If f(x,y) is convex in x for each y € A, then

g(x) = sup f(x,y)
yeA

is convex.

Example:
@ distance to farthest point in a set C:

f(x) = sup[lx —y||
yeC
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Operations that preserve convexity

Minimization:
If f(x,y) is convex in (x,y) and C is a convex set, then

g(x) = y'gfc f(x,y)

is convex.

Example: distance to a set: dist(x,S) = infycs ||x — y|| is convex if S is
convex.
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Questions

e
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