Optimization for Machine Learning 机器学习中的优化方法

陈程

华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn

Outline

Convex Set

2 Convex Function

Outline

Convex Set

Convex Function

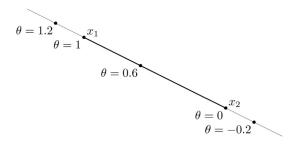
Lines and Line Segments (直线与线段)

line through x_1 and x_2 : all points

$$\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad \theta \in \mathbb{R}.$$

line segment between x_1 and x_2 : all points

$$\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad 0 \le \theta \le 1.$$

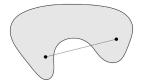


 Lecture 02
 OptML
 September 27, 2023
 3 / 32

Convex Sets (凸集)

A set $S \subseteq \mathbb{R}^n$ is **convex** if the line segment between any two points of S lies in S, i.e., if for any $\mathbf{x}, \mathbf{y} \in S$ and $\theta \in [0,1]$, we have

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{S}$$
.



Every two points can see each other.

Properties of Convex Sets

- If S is a convex set, then $kS = \{k\mathbf{s} | k \in \mathbb{R}, \mathbf{s} \in S\}$ is convex.
- If $\mathcal S$ and $\mathcal T$ are convex sets, then $\mathcal S+\mathcal T=\{\mathbf s+\mathbf t|\mathbf s\in\mathcal S,\mathbf t\in\mathcal T\}$ is convex.
- If $\mathcal S$ and $\mathcal T$ are convex sets, then $\mathcal S \times \mathcal T = \{(\mathbf s, \mathbf t) | \mathbf s \in \mathcal S, \mathbf t \in \mathcal T\}$ is convex.
- If S and T are convex sets, then $S \cap T$ is convex.

Convex Combination (凸组合)

Convex combination of x_1, \ldots, x_k : any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$.

If $\mathbf{x}_1, \dots, \mathbf{x}_k$ belong to a convex set \mathcal{S} , then their convex combination \mathbf{x} also belongs to \mathcal{S} .

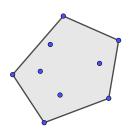
Lecture 02 OptML September 27, 2023 6 / 32

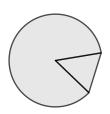
Convex Hull (凸包)

Convex hull convS: set of all convex combinations of points in S.

$$\mathrm{conv}\mathcal{S} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k | \mathbf{x}_i \in \mathcal{S}, \theta_i \geq 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}.$$

Example: convex hull of $\{0,1\}$ is [0,1].





Affine Sets (仿射集)

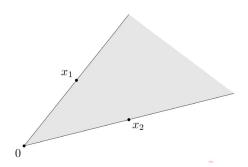
A set is called **affine set** if it contains the line through any two distinct points in the set.

Example: solution set of linear equations $\{x | Ax = b\}$.

Cones (锥)

A set $\mathcal C$ is called a **cone** if for every $\mathbf x \in \mathcal C$ and $\theta > 0$ we have $\theta \mathbf x \in \mathcal C$. A set $\mathcal C$ is called a **convex cone** if it is convex and a cone, which means that for any $\mathbf x_1, \mathbf x_2 \in \mathcal C$ and $\theta_1, \theta_2 > 0$, we have

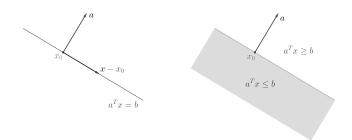
$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}.$$



Hyperplanes and Halfspaces (超平面与半平面)

Hyperplane: set of the form $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x}=\mathbf{b}\}\ (a\neq 0)$.

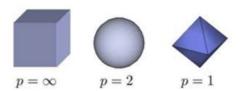
Halfplane: set of the form $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x} \leq \mathbf{b}\}\ (a \neq 0)$.



Hyperplane is affine set.

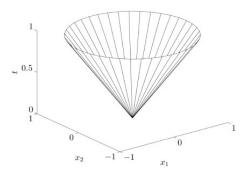
Norm Balls (范数球)

Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | ||\mathbf{x} - \mathbf{x}_c|| \le r\}$.



Norm Cones (范数锥)

Norm cone: $\{(x, t) | ||x|| \le t\}$.



Affine functions (仿射函数).

Suppose S is convex and $f: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function:

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}.$$

Then the image of S under f:

$$f(\mathcal{S}) = \{ f(\mathbf{x}) | \mathbf{x} \in \mathcal{S} \}$$

is convex. The inverse image:

$$f^{-1}(\mathcal{S}) = \{\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \in \mathcal{S}\}$$

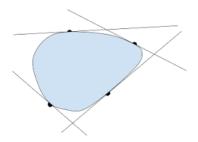
is convex.

Intersection (取交集).

The intersection of (any number of) convex sets is convex, i.e., if S_{α} is convex for any $\alpha \in A$, then $\cap_{\alpha \in A} S_{\alpha}$ is convex.

A closed convex set ${\cal S}$ is the intersection of all halfspaces contain it:

$$S = \bigcap \{ \mathcal{H} | \mathcal{H} \text{ is halfspace}, S \subseteq \mathcal{H} \}$$

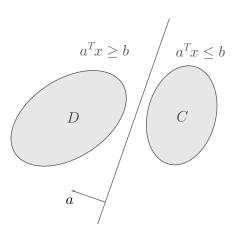


Lecture 02 OptML September 27, 2023

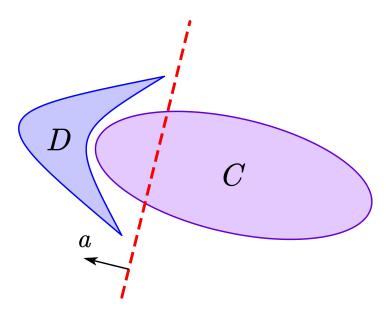
Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists $\mathbf{a} \neq 0$ and b s.t.

 $\mathbf{a}^{\top}\mathbf{x} \leq b \text{ for } \mathbf{x} \in \mathcal{C}, \ \mathbf{a}^{\top}\mathbf{x} \geq b \text{ for } \mathbf{x} \in \mathcal{D}.$



Hyperplane Separation Theorem



Strict Separation Theorem

Suppose $\mathcal C$ and $\mathcal D$ are nonempty disjoint convex sets. If $\mathcal C$ is closed and $\mathcal D$ is compact, there exists $\mathbf a \neq 0$ and b s.t.

$$\mathbf{a}^{\top}\mathbf{x} < b \text{ for } \mathbf{x} \in \mathcal{C}, \ \mathbf{a}^{\top}\mathbf{x} > b \text{ for } \mathbf{x} \in \mathcal{D}.$$

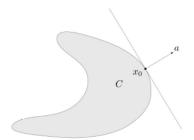
Example: a point and a closed convex set.

Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point \mathbf{x}_0 :

$$\{\boldsymbol{a}^{\top}\boldsymbol{x}=\boldsymbol{a}^{\top}\boldsymbol{x}_{0}\}$$

where $a \neq 0$ and $\mathbf{a}^{\top} \mathbf{x} \leq \mathbf{a}^{\top} \mathbf{x}_0$ for all $\mathbf{x} \in \mathcal{C}$.



Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Lecture 02 OptML September 27, 2023 18 / 32

Outline

Convex Set

2 Convex Function

Lecture 02 OptML September 27, 2023

Convex Function (凸函数)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$, $\theta \in [0, 1]$.

f is concave if -f is convex.

Strict convex function:

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) < \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}), \ t \in (0, 1), \ \mathbf{x} \neq \mathbf{y}$$

Examples

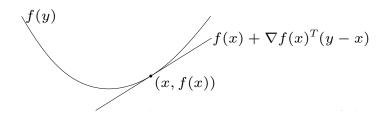
- exponontial: e^{ax} .
- power: x^{α} ($x > 0, \alpha \ge 1$).
- logarithm: $\log_a x (0 < a < 1)$.
- negtive entropy: x log x
- affine: $\mathbf{a}^{\top}\mathbf{x} + b$.
- norms: ||x||.

First-Order Condition

Suppose f is differentiable and has convex domain, then f is convex if and only if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

holds for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$.



First-Order Condition

If $\nabla f(\mathbf{x}) = 0$, then for all $\mathbf{y} \in \text{dom } f$, $f(\mathbf{y}) \geq f(\mathbf{x})$, i.e., \mathbf{x} is a global minimizer of f.

Strict convex:

$$f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$
, if $\mathbf{y} \neq \mathbf{x}$.

Second-Order Condition

Suppose f is twice differentiable and has convex domain, then f is convex if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$$
.

Strict convex:

$$\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$$
.

Examples

- least-square: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- quadratic-over-linear: $f(x, y) = x^2/y$
- log-sum-exp: $f(x) = \log \sum_{i=1}^{n} \exp(x_i)$

Sublevels

The α -sublevel set of a function f is defined as

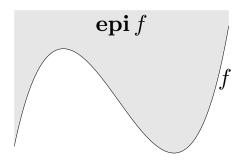
$$C_{\alpha} = \{ \mathbf{x} \in \text{dom } f | f(\mathbf{x}) \leq \alpha \}$$

Sublevel sets of convex functions are convex (converse is false).

Epigraph (上方图)

The epigraph of a function $f:\mathcal{S}\to\mathbb{R}$ is defined as the set

epi
$$f \triangleq \{(\mathbf{x}, u) \in \mathcal{S} \times \mathbb{R} : f(\mathbf{x}) \leq u\}.$$



Theorem. A function $f(\mathbf{x})$ is convex if and only if its epigraph is a convex set.

Lecture 02 OptML September 27, 2023 26 / 32

Jensen Inequality

Jensen Inequality and extensions:

$$\begin{split} f(\theta\mathbf{x} + (1-\theta)\mathbf{y}) &\leq \theta f(\mathbf{x}) + (1-\theta)f(\mathbf{y}), \ \theta \in [0,1] \\ f(\theta_1\mathbf{x}_1 + \dots + \theta_k\mathbf{x}_k) &\leq \theta_1 f(\mathbf{x}_1) + \dots + \theta_k f(\mathbf{x}_k), \ \theta_1 + \dots \theta_k = 1 \\ f\left(\int_{\mathcal{S}} p(\mathbf{x})\mathbf{x} \mathrm{d}\,\mathbf{x}\right) &\leq \int_{\mathcal{S}} f(\mathbf{x})p(\mathbf{x}) \mathrm{d}\,\mathbf{x} \\ f(\mathbb{E}[\mathbf{x}]) &\leq \mathbb{E}[f(\mathbf{x})], \ \text{for any random variable } \mathbf{x} \end{split}$$

 Lecture 02
 OptML
 September 27, 2023
 27 / 32

Nonnegative weighted sums:

A nonnegative weighted sum of convex functions

$$f = w_1 f_1 + \cdots + w_m f_m$$

is convex.

Composition with affine function:

If f is convex, then $f(\mathbf{Ax} + \mathbf{b})$ is convex.

Pointwise maximum:

If f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.

Example:

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (\mathbf{a}_i^{\top} \mathbf{x} + \mathbf{b}_i)$ is convex
- sum of r largest components of $\mathbf{x} \in \mathbb{R}^n$:

$$f(\mathbf{x}) = x_{[1]} + \cdots + x_{[r]}$$

is convex. ($\mathbf{x}_{[i]}$ is *i*-th largest component of \mathbf{x})

Pointwise supremum:

If f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex.

Example:

• distance to farthest point in a set C:

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|$$

Minimization:

If f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

is convex.

Example: distance to a set: $dist(\mathbf{x}, \mathcal{S}) = \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|$ is convex if \mathcal{S} is convex.

Lecture 02 OptML September 27, 2023

Questions

