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What can I learn in this course?

In this course, you can learn:

1 the mathematical principles behind optimization methods;

2 how to choose suitable optimization algorithms for machine learning
problems;

3 implementation of optimization methods.

Prerequisite course: calculus, linear algebra, probability, Python/Matlab.

It would be better if you learned: machine learning, convex optimization.
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Course Overview

Grading Policy:

Attendance, 10%

Homework, 50%

Mini-project, 40%

Teaching Assistant:

姚子奇：51265902073@stu.ecnu.edu.cn
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Course Overview

Recommended reading:
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What is Machine Learning?

Machine Learning studies how to empower computers to
automatically improve their own abilities by utilizing data.
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What is Optimization?

Optimization
Statistic

Machine
Learning
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Why is Optimization Important?

Pedro Domingos (AAAI Fellow, Prof. @ UW):

Machine Learning = Representation + Evaluation +
Optimization
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Optimization

General optimization problem:

min
x∈X

f (x)

feasible set: X ∈ Rd ;

objective function: f : Rd → R;
usually f is continuous in machine learning problems.
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History of Optimization

1847: Cauchy proposes gradient descent

1950s: Linear Programs, soon followed by non-linear, Stochastic
Gradient Descent (SGD)

1980s: General optimization, convergence theory

2005-2015: Large scale optimization (mostly convex), convergence of
SGD

2015-today: Improved understanding of SGD for deep learning
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No-Free-Lunch Theorem for Optimization

D. H. Wolpert and W. G. Macready (1997):

If algorithm A performs better than algorithm B for some
optimization functions, then B will outperform A for other functions.

There is no universally better algorithms exist.
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The Classification of Optimization Problems

The description of the feasible set:

unconstrained vs. constrained

The properties of the objective function:

linear vs. nonlinear

smooth vs. nonsmooth

convex vs. nonconvex

The settings in real application:

deterministic vs. stochastic

non-distributed vs. distributed
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Convex vs. Nonconvex

“In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” by R. T. Rockfeller
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Convex Optimization in Machine Learning

The typical optimization problem in machine learning

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

l(bia
⊤
i x).

We consider the following loss functions.

1 hinge loss (support vector machine):

l(z) = max{1− z , 0}

2 logistic loss (logistic regression):

l(z) = ln(1 + exp(−z))
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Convex Optimization in Machine Learning

We typically introduce the regularization term

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

l(bia
⊤
i x) + λR(x), where λ > 0.

Some popular regularization terms:

ridge regularization

R(x) ≜ ∥x∥22

Lasso regularization

R(x) ≜ ∥x∥1
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Non-convex Optimization in Machine Learning

We can use more general loss function and formulate

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

l(x; ai , bi ) + λR(x), where λ > 0.

Here the loss function l(x; ai , bi ) can be non-convex functions, e.g., neural
networks.
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Notations

We use xi to denote the entry of the n-dimensional vector x such that

x =


x1
x2
...
xn

 ∈ Rn.

We use aij to denote the entry of matrix A with dimension m× n such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n.
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Vector Norms

A norm of a vector x ∈ Rn written by ∥x∥, is informally a measure of the
length of the vector. For example, we have the commonly-used Euclidean
norm (or ℓ2 norm),

∥x∥2 =
√
x⊤x =

√√√√ n∑
i=1

x2i .

Formally, a norm is any function Rn → R that satisfies four properties:

1 For all x ∈ Rn, we have ∥x∥ ≥ 0 (non-negativity).

2 ∥x∥ = 0 if and only if x = 0 (definiteness).

3 For all x ∈ Rn and t ∈ R, we have ∥tx∥ = |t| ∥x∥ (homogeneity).

4 For all x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).
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Vector Norms

Some examples for x ∈ Rn:

The ℓ1-norm: ∥x∥1 =
∑n

i=1 |xi |

The ℓ2-norm: ∥x∥2 =
√∑n

i=1 x
2
i

The ℓ∞-norm: ∥x∥∞ = maxi |xi |
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Vector Inner Product

The inner product on Rn is given by:

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi .

We have following properties:

⟨x, x⟩ = ∥x∥22
|⟨x, y⟩| ≤ ∥x∥2∥y∥2 (Cauchy–Schwarz inequality)
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Matrix Norms

General matrix norm is any function Rm×n → R that satisfies:

1 For all A ∈ Rm×n, we have ∥A∥ ≥ 0 (non-negativity).

2 ∥A∥ = 0 if and only if A = 0 (definiteness).

3 For all A ∈ Rm×n and t ∈ R, we have ∥tA∥ = |t| ∥A∥ (homogeneity).

4 For all A,B ∈ Rm×n, we have ∥A+ B∥ ≤ ∥A∥+ ∥B∥
(triangle inequality).

Frobenius norm of m × n matrix A:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2i ,j
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Induced Matrix Norms

Given vector norm ∥·∥, the corresponding induced matrix norm of
A ∈ Rm×n is defined as

∥A∥ = sup
x∈Rn,x̸=0

∥Ax∥
∥x∥

= sup
x∈Rn,∥x∥=1

∥Ax∥ .

For example, we define

∥A∥1 = sup
x∈Rn,∥x∥1=1

∥Ax∥1

∥A∥2 = sup
x∈Rn,∥x∥2=1

∥Ax∥2

∥A∥∞ = sup
x∈Rn,∥x∥∞=1

∥Ax∥∞ .
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Singular Value Decomposition

The singular value decomposition (SVD) of A ∈ Rm×n matrix is

A = UΣV⊤,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is rectangular diagonal matrix
with non-negative real numbers on the diagonal and V ∈ Rn×n is
orthogonal.
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Singular Value Decomposition

The SVD is not unique. It is always possible to choose the decomposition
so that the singular values σi are in descending order.

The term sometimes refers to the compact SVD, a similar decomposition

A = UrΣrV
⊤
r

in which Σr is square diagonal of size r × r , where r ≤ min{m, n} is the
rank of A, and has only the non-zero singular values. In this variant, Ur is
an m × r column orthogonal matrix and Vr is an n × r column orthogonal
matrix such that U⊤

r Ur = V⊤
r Vr = I.
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Pseudo-inverse of General Matrices

Let A = UΣV⊤ be the singular value decomposition of A ∈ Rm×n with
rank(A) = r . We define the pseudo-inverse of A as

A† = VΣ−1U⊤ ∈ Rn×m.
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar x⊤Ax is
called a quadratic form and we have

x⊤Ax =
n∑

i=1

n∑
j=1

aijxixj .

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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Definiteness

1 A symmetric matrix A ∈ Rn×n is positive definite (PD) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax > 0. This is usually
denoted by A ≻ 0.

2 A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≥ 0. This is usually denoted by
A ⪰ 0.
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Topology in Euclidean Space

Open set, closed set, bounded set and compact set:

1 A subset C of Rn is called open, if for every x ∈ C there exists δ > 0
such that the ball Bδ(x) = {y : ∥y − x∥2 ≤ δ} is included in C.
Example: {x |a < x < b}, {x|x > 0}, {x| ∥x− a∥ < 1}.

2 A subset C of Rn is called closed, if its complement Cc = Rn\C is
open.
Example: {x |a ≤ x ≤ b}, {x|x ≥ 0}, {x| ∥x− a∥ ≤ 1}.

3 A subset C of Rn is called bounded, if there exists r > 0 such that
∥x∥2 < r for all x ∈ C.
Example: {x |a ≤ x < b}, {x|1 > x ≥ 0}, {x| ∥x− a∥ < 1}.

4 A subset C of Rn is called compact, if it is both bounded and closed.
Example: {x |a ≤ x ≤ b}, {x|1 ≥ x ≥ 0}, {x| ∥x− a∥ ≤ 1}.
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Topology in Euclidean Space

Interior, closure and boundary:

1 The interior of C ∈ Rn is defined as

C◦ = {y : there exist ε > 0 such that Bε(y) ⊂ C}

2 The closure of C ∈ Rn is defined as

C = Rn\(Rn\C)◦.

3 The boundary of C ∈ Rn is defined as C\C◦.
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Q-Convergence Rate

Assume the sequence {xk} converges to x∗. We define the sequence of
errors to be

zk = ∥xk − x∗∥ .

We say the sequence {xk} converges to x∗ with rate r and rate constant C
if

lim
k→+∞

zk+1

z rk
= C for some C ∈ R.

linear: r = 1, 0 < C < 1; Q-linear

sublinear: r = 1, C = 1;

superlinear: r = 1, C = 0;

quadratic: r = 2.
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Q-Convergence Rate

Examples:

xk = 1/k2

xk = 10−k

xk = 10−2k

xk+1 = xk/2 + 2/xk , x1 = 4
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Convergence Rates

Consider the example

xk =

{
1 + 2−k , if k is even,

1, if k is odd.

It should converge to x∗ = 1 linearly, however,

lim
k→+∞

|xk+1 − x∗|
|xk − x∗|

does not exist.
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R-Convergence Rates

Suppose that {xk} converges to x∗. The sequence is said to converge
R-linearly to x∗ if there exists a sequence {ϵk} such that

∥xk − x∗∥ ≤ ϵk

for all k and {ϵk} converges Q-linearly to zero.

The sequence

xk =

{
1 + 2−k , if k is even,

1, if k is odd.

R-linearly converges to one.
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Derivative

Suppose f : Rn → Rm and x ∈ (dom f )◦. The derivative at x is

Df (x) =


∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

. . .
...

∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 ∈ Rm×n.

This matrix is also called Jacobian matrix.
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Gradient

When f is real-valued, i.e., f : Rn → R, the gradient of f is:

∇f (x) = Df (x)⊤ =


∂f (x)

∂x1
...

∂f (x)

∂xn

 ∈ Rn×1.
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Gradient of Matrices

Suppose that f : Rm×n → R. Then the gradient of f with respect to X is

∇f (X) =
∂f

∂X
=


∂f (X)

∂x11
· · · ∂f (X)

∂x1n
...

. . .
...

∂f (X)

∂xm1
· · · ∂f (X)

∂xmn

 ∈ Rm×n.
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Some Basic Results

1 For X ∈ Rm×n, we have
∂(f (X) + g(X))

∂X
=

∂f (X)

∂X
+

∂g(X)

∂X
.

2 For X ∈ Rm×n and t ∈ R, we have
∂tf (X)

∂X
= t

∂f (X)

∂X
.

3 For A,X ∈ Rm×n, we have
∂tr(A⊤X)

∂X
= A.

4 For A ∈ Rn×n and x ∈ Rn, we have
∂x⊤Ax

∂x
= (A+ A⊤)x.

If A is symmetric, we have
∂x⊤Ax

∂x
= 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Lecture 01 OptML September 20, 2023 37 / 41

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


Chain Rule

Suppose f : Rn → Rm is differentiable at x ∈ dom f and g : Rm → Rp is
differentiable at f (x) ∈ (dom g)◦. Define the composition h : Rn → Rp by
h(z) = g(f (z)). Then h is is differentiable at x and

Dh(x) = D(g(f (x))D(f (x)).

Examples:

Suppose f : Rn → R, g : R → R and h(x) = g(f (x)). Then

∇h(x) = g ′(f (x))∇f (x).

Suppose f : Rn → R, A ∈ Rn×p and b ∈ Rn. Define h : Rp → R as
h(x) = f (Ax+ b). Then,

∇h(x) = A⊤∇f (Ax+ b).
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Gradient of Logistic Regression

What is the gradient of the following function?

f (x) = log
m∑
i=1

exp(a⊤i x+ bi )
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The Hessian Matrix

Suppose that f : Rn → R is a smooth function that takes as input a
matrix x ∈ Rn and returns a real value. Then the Hessian matrix with
respect to x, written as ∇2f (x), which is defined as

∇2f (x) =


∂2f (x)

∂x1∂x1
· · · ∂2f (x)

∂x1∂xn
...

. . .
...

∂2f (x)

∂xn∂x1
· · · ∂2f (x)

∂xn∂xn

 ∈ Rn×n.

Taylor’s expansion for multivariable function f : Rn → R

f (x) ≈ f (a) +∇f (a)⊤(x− a) +
1

2
(x− a)⊤∇2f (a)(x− a)
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Chain Rules for Second Derivative

Suppose f : Rn → R, g : R → R and h(x) = g(f (x)). Then

∇2h(x) = g ′(f (x))∇2f (x) + g ′′(f (x))∇f (x)∇f (x)⊤.

Suppose f : Rn → R, A ∈ Rn×p and b ∈ Rn. Define h : Rp → R as
h(x) = f (Ax+ b). Then,

∇2h(x) = A⊤∇2f (Ax+ b)A.
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