Notes for Lecture 2

Theorem. A function $f(\mathbf{x})$ is convex if and only if its epigraph is a convex set.

Proof. Part I: Suppose f is convex. For any (\mathbf{x}_1, u_1) and (\mathbf{x}_2, u_2) in $epi\ f, \alpha \in [0, 1]$, we have

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) \le \alpha u_1 + (1 - \alpha)u_2$$

which means epi f is a convex set.

Part II: Suppose $epi\ f$ is convex. Notice that for any $\mathbf{x}_1, \mathbf{x}_2 \in dom\ f$, we have $(\mathbf{x}_1, f(\mathbf{x}_1))$ and $(\mathbf{x}_2, f(\mathbf{x}_2))$ belong to $epi\ f$. Then for any $\alpha \in [0, 1]$, we can get

$$(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)) \in epi \ f,$$

which means $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$.

Theorem. If $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then

$$g(\mathbf{x}) = \inf_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$$

is convex.

Proof. Suppose $\mathbf{x}_1, \mathbf{x}_2 \in \text{dom } g$. For any $\epsilon > 0$, there are $\mathbf{y}_1, \mathbf{y}_2 \in C$, such that

$$f(\mathbf{x}_1, \mathbf{y}_1) \le g(\mathbf{x}_1) + \epsilon;$$

$$f(\mathbf{x}_2, \mathbf{y}_2) \le g(\mathbf{x}_2) + \epsilon;$$

Since $f(\mathbf{x}, \mathbf{y})$ is convex, we have

$$f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2, \theta \mathbf{y}_1 + (1 - \theta)y_2) \le \theta f(\mathbf{x}_1, y_1) + (1 - \theta)f(\mathbf{x}_2, y_2).$$

Thus,

$$g(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) = \inf_{\mathbf{y} \in C} f(\theta \mathbf{x}_1 + (1 - \theta)x_2, \mathbf{y})$$

$$\leq f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2, \theta \mathbf{y}_1 + (1 - \theta)\mathbf{y}_2)$$

$$\leq \theta f(\mathbf{x}_1, \mathbf{y}_1) + (1 - \theta)f(\mathbf{x}_2, \mathbf{y}_2)$$

$$\leq \theta g(\mathbf{x}_1) + (1 - \theta)g(\mathbf{x}_2) + \epsilon.$$

Since this holds for any $\epsilon > 0$, we have

$$g(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \le \theta g(\mathbf{x}_1) + (1 - \theta)g(\mathbf{x}_2).$$